Typical event horizons in AdS/CFT

  • Steven G. AveryEmail author
  • David A. Lowe
Open Access
Regular Article - Theoretical Physics


We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.


Black Holes Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.G. Boulware, Quantum field theory in Schwarzschild and Rindler spaces, Phys. Rev. D 11 (1975) 1404 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J. Hartle and S. Hawking, Path integral derivation of black hole radiance, Phys. Rev. D 13 (1976) 2188 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    D.A. Lowe, Black hole complementarity from AdS/CFT, Phys. Rev. D 79 (2009) 106008 [arXiv:0903.1063] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].
  9. [9]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT and the fate of the BTZ singularity, AMS/IP Stud. Adv. Math. 44 (2008) 85 [arXiv:0710.4334] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    S.G. Avery and D.A. Lowe, Event horizons and holography, arXiv:1310.7999 [INSPIRE].
  11. [11]
    D.A. Lowe and L. Thorlacius, Black hole complementarity: The inside view, Phys. Lett. B 737 (2014) 320 [arXiv:1402.4545] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    K. Papadodimas and S. Raju, Black hole interior in the holographic correspondence and the information paradox, Phys. Rev. Lett. 112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.A. Lowe and L. Thorlacius, Quantum information erasure inside black holes, JHEP 12 (2015) 096 [arXiv:1508.06572] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    D.A. Lowe and L. Thorlacius, Pure states and black hole complementarity, Phys. Rev. D 88 (2013) 044012 [arXiv:1305.7459] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations