Advertisement

A new scheme for NMSSM in gauge mediation

  • Masaki Asano
  • Yuichiro Nakai
  • Norimi Yokozaki
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a new framework for the next-to-minimal supersymmetric standard model (NMSSM) in gauge mediation, where in general the correct electroweak symmetry breaking (EWSB) is difficult to be explained. The difficulty is caused by the absence of a soft supersymmetry (SUSY) breaking mass for the NMSSM singlet S. In our framework, S is a meson in a hidden QCD. This QCD is responsible for the dynamical SUSY breaking, forming S, and the soft SUSY breaking mass for S, which is a key to explain the correct EWSB: all the ingredients for successful phenomenology originate from the common dynamics. From the requirement of the successful EWSB, the low-scale SUSY breaking around 100-1000 TeV is predicted. This is favored to avoid the large fine-tuning.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K.A. Intriligator and N. Seiberg, Lectures on Supersymmetry Breaking, Class. Quant. Grav. 24 (2007) S741 [hep-ph/0702069] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric Technicolor, Nucl. Phys. B 189 (1981) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, Phys. Lett. B 110 (1982) 227 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.R. Nappi and B.A. Ovrut, Supersymmetric Extension of the SU(3) × SU(2) × U(1) Model, Phys. Lett. B 113 (1982) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-Energy Supersymmetry, Nucl. Phys. B 207 (1982) 96 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
  12. [12]
    R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry Breaking and Gauge Mediation, Ann. Rev. Nucl. Part. Sci. 60 (2010) 491 [arXiv:1001.4535] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs Mass and Muon Anomalous Magnetic Moment in Supersymmetric Models with Vector-Like Matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Sato, K. Tobioka and N. Yokozaki, Enhanced Diphoton Signal of the Higgs Boson and the Muon g − 2 in Gauge Mediation Models, Phys. Lett. B 716 (2012) 441 [arXiv:1208.2630] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy Squarks and Light Sleptons in Gauge Mediation. From the viewpoint of 125 GeV Higgs Boson and Muon g − 2, JHEP 03 (2013) 078 [arXiv:1210.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Bhattacharyya, B. Bhattacherjee, T.T. Yanagida and N. Yokozaki, A natural scenario for heavy colored and light uncolored superpartners, Phys. Lett. B 725 (2013) 339 [arXiv:1304.2508] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Bhattacharyya, B. Bhattacherjee, T.T. Yanagida and N. Yokozaki, A practical GMSB model for explaining the muon (g − 2) with gauge coupling unification, Phys. Lett. B 730 (2014) 231 [arXiv:1311.1906] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Barbieri, M. Frigeni and F. Caravaglios, The Supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    A. de Gouvêa, A. Friedland and H. Murayama, Next-to-minimal supersymmetric standard model with the gauge mediation of supersymmetry breaking, Phys. Rev. D 57 (1998) 5676 [hep-ph/9711264] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Hamaguchi, K. Nakayama and N. Yokozaki, NMSSM in gauge-mediated SUSY breaking without domain wall problem, Phys. Lett. B 708 (2012) 100 [arXiv:1107.4760] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Hamaguchi, K. Nakayama and N. Yokozaki, A solution to the μ/Bμ Problem in Gauge Mediation with Hidden Gauge Symmetry, JHEP 08 (2012) 006 [arXiv:1111.1601] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    U. Ellwanger, C.C. Jean-Louis and A.M. Teixeira, Phenomenology of the General NMSSM with Gauge Mediated Supersymmetry Breaking, JHEP 05 (2008) 044 [arXiv:0803.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Delgado, G.F. Giudice and P. Slavich, Dynamical μ term in gauge mediation, Phys. Lett. B 653 (2007) 424 [arXiv:0706.3873] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Allanach, M. Badziak, C. Hugonie and R. Ziegler, Light Sparticles from a Light Singlet in Gauge Mediation, Phys. Rev. D 92 (2015) 015006 [arXiv:1502.05836] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T.T. Yanagida, N. Yokozaki and K. Yonekura, Higgs Boson Mass in Low Scale Gauge Mediation Models, JHEP 10 (2012) 017 [arXiv:1206.6589] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Kowalska, J. Pawelczyk and E.M. Sessolo, Flavored gauge mediation in the Peccei-Quinn NMSSM, JHEP 12 (2015) 148 [arXiv:1508.04142] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Chang, C. Kilic and R. Mahbubani, The New fat Higgs: Slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].ADSGoogle Scholar
  35. [35]
    N. Craig, D. Stolarski and J. Thaler, A Fat Higgs with a Magnetic Personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].ADSGoogle Scholar
  37. [37]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    H. Murayama and Y. Nomura, Gauge Mediation Simplified, Phys. Rev. Lett. 98 (2007) 151803 [hep-ph/0612186] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural Supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Sato, T.T. Yanagida and K. Yonekura, Relaxing a constraint on the number of messengers in a low-scale gauge mediation, Phys. Rev. D 81 (2010) 045003 [arXiv:0910.3790] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Giveon, A. Katz and Z. Komargodski, On SQCD with massive and massless flavors, JHEP 06 (2008) 003 [arXiv:0804.1805] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    R. Kitano, H. Ooguri and Y. Ookouchi, Direct Mediation of Meta-Stable Supersymmetry Breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [INSPIRE].ADSGoogle Scholar
  46. [46]
    Z. Komargodski and D. Shih, Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y. Nakai and Y. Ookouchi, Comments on Gaugino Mass and Landscape of Vacua, JHEP 01 (2011) 093 [arXiv:1010.5540] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Hisano, M. Nagai, S. Sugiyama and T.T. Yanagida, Upperbound on Squark Masses in Gauge-Mediation Model with Light Gravitino, Phys. Lett. B 665 (2008) 237 [arXiv:0804.2957] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Liu and C.E.M. Wagner, Dynamically Solving the mu/B(mu) Problem in Gauge-mediated Supersymmetry Breaking, JHEP 06 (2008) 073 [arXiv:0803.2895] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Gauge-mediated embedding of the singlet extension of the minimal supersymmetric standard model, Phys. Rev. D 82 (2010) 035006 [arXiv:1005.4901] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Schäfer-Nameki, C. Tamarit and G. Torroba, Naturalness from runaways in direct mediation, Phys. Rev. D 83 (2011) 035016 [arXiv:1011.0001] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. de Blas and A. Delgado, Exploring singlet deflection of gauge mediation, Phys. Rev. D 83 (2011) 115011 [arXiv:1103.3280] [INSPIRE].ADSGoogle Scholar
  53. [53]
    N. Craig, S. Knapen, D. Shih and Y. Zhao, A Complete Model of Low-Scale Gauge Mediation, JHEP 03 (2013) 154 [arXiv:1206.4086] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    U. Ellwanger, C.C. Jean-Louis and A.M. Teixeira, Phenomenology of the General NMSSM with Gauge Mediated Supersymmetry Breaking, JHEP 05 (2008) 044 [arXiv:0803.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in Low-Energy Superstring Models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Asano, T. Ito, S. Matsumoto and T. Moroi, Exploring Supersymmetric Model with Very Light Gravitino at the LHC, JHEP 03 (2012) 011 [arXiv:1111.3725] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    CMS collaboration, Search for anomalous production of events with three or more leptons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].
  60. [60]
    M. Viel, G.D. Becker, J.S. Bolton, M.G. Haehnelt, M. Rauch and W.L.W. Sargent, How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest, Phys. Rev. Lett. 100 (2008) 041304 [arXiv:0709.0131] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Fujii and T. Yanagida, Natural gravitino dark matter and thermal leptogenesis in gauge mediated supersymmetry breaking models, Phys. Lett. B 549 (2002) 273 [hep-ph/0208191] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Hamaguchi, M. Ibe, T.T. Yanagida and N. Yokozaki, Testing the Minimal Direct Gauge Mediation at the LHC, Phys. Rev. D 90 (2014) 015027 [arXiv:1403.1398] [INSPIRE].ADSGoogle Scholar
  64. [64]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  65. [65]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  66. [66]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  67. [67]
    K.-I. Izawa and T. Yanagida, Dynamical supersymmetry breaking in vector-like gauge theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K.A. Intriligator and S.D. Thomas, Dynamical supersymmetry breaking on quantum moduli spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    X. Lu, H. Murayama, J.T. Ruderman and K. Tobioka, A Natural Higgs Mass in Supersymmetry from NonDecoupling Effects, Phys. Rev. Lett. 112 (2014) 191803 [arXiv:1308.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Asano, Y. Nakai and N. Yokozaki, in preparation.Google Scholar
  71. [71]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Physikalisches Institut and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di RomaRomeItaly

Personalised recommendations