Advertisement

The four-loop six-gluon NMHV ratio function

  • Lance J. Dixon
  • Matt von HippelEmail author
  • Andrew J. McLeod
Open Access
Regular Article - Theoretical Physics

Abstract

We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar \( \mathcal{N}=4 \) super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a \( \overline{Q} \) differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result against multi-Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. We also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.

Keywords

Scattering Amplitudes Supersymmetric gauge theory 1/N Expansion 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Mandelstam, Light Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    L. Brink, O. Lindgren and B.E.W. Nilsson, The Ultraviolet Finiteness of the N = 4 Yang-Mills Theory, Phys. Lett. B 123 (1983) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest, Nucl. Phys. B 236 (1984) 125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L.F. Alday and R. Roiban, Scattering Amplitudes, Wilson Loops and the String/Gauge Theory Correspondence, Phys. Rept. 468 (2008) 153 [arXiv:0807.1889] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    T. Adamo, M. Bullimore, L. Mason and D. Skinner, Scattering Amplitudes and Wilson Loops in Twistor Space, J. Phys. A 44 (2011) 454008 [arXiv:1104.2890] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Georgiou, E.W.N. Glover and V.V. Khoze, Non-MHV tree amplitudes in gauge theory, JHEP 07 (2004) 048 [hep-th/0407027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to N = 4 super-Yang-Mills, J. Phys. A 44 (2011) 454004 [arXiv:1103.3298] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The Soft-Collinear Bootstrap: N = 4 Yang-Mills Amplitudes at Six and Seven Loops, JHEP 03 (2012) 032 [arXiv:1112.6432] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering Amplitudes and the Positive Grassmannian, arXiv:1212.5605 [INSPIRE].
  30. [30]
    A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude revisited, JHEP 01 (2014) 169 [arXiv:1307.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar \( \mathcal{N}=4 \) super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping six-gluon scattering in planar \( \mathcal{N}=4 \) super-Yang-Mills theory, PoS(LL2014)077 [arXiv:1407.4724] [INSPIRE].
  39. [39]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].CrossRefzbMATHGoogle Scholar
  41. [41]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in \( \mathcal{N}=4 \) SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in \( \mathcal{N}=4 \) SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\mathfrak{M}}_{0,n} \), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].
  46. [46]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Golden and M. Spradlin, A Cluster Bootstrap for Two-Loop MHV Amplitudes, JHEP 02 (2015) 002 [arXiv:1411.3289] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
  52. [52]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].
  54. [54]
    F. Brown, Mixed Tate motives over \( \mathrm{\mathbb{Z}} \), arXiv:1102.1312.
  55. [55]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes, JHEP 11 (2015) 136 [arXiv:1507.01950] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
  58. [58]
    S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of Planar N = 4 Super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    S. Caron-Huot and S. He, private communications.Google Scholar
  60. [60]
    A.V. Belitsky, Descent equation for superloop and cyclicity of OPE, arXiv:1506.02598 [INSPIRE].
  61. [61]
    A.V. Belitsky, Towards NMHV amplitudes at strong coupling, arXiv:1509.06054 [INSPIRE].
  62. [62]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, N=4 supersymmetric Yang-Mills scattering amplitudes at high energies: The Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in \( \mathcal{N}=4 \) SUSY, Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].ADSGoogle Scholar
  65. [65]
    L.N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in \( \mathcal{N}=4 \) super Yang-Mills, Phys. Rev. D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Bartels, L.N. Lipatov and A. Prygarin, MHV amplitude for 3 → 3 gluon scattering in Regge limit, Phys. Lett. B 705 (2011) 507 [arXiv:1012.3178] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Bartels, L.N. Lipatov and A. Prygarin, Collinear and Regge behavior of 2 → 4 MHV amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [INSPIRE].
  68. [68]
    V.S. Fadin and L.N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at \( \mathcal{N}=4 \) SUSY, Phys. Lett. B 706 (2012) 470 [arXiv:1111.0782] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Pennington, The six-point remainder function to all loop orders in the multi-Regge limit, JHEP 01 (2013) 059 [arXiv:1209.5357] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    Y. Hatsuda, Wilson loop OPE, analytic continuation and multi-Regge limit, JHEP 10 (2014) 38 [arXiv:1404.6506] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP 01 (2015) 027 [arXiv:1407.3766] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J.M. Drummond and G. Papathanasiou, Hexagon OPE Resummation and Multi-Regge Kinematics, arXiv:1507.08982 [INSPIRE].
  75. [75]
    L. Lipatov, A. Prygarin and H.J. Schnitzer, The Multi-Regge limit of NMHV Amplitudes in \( \mathcal{N}=4 \) SYM Theory, JHEP 01 (2013) 068 [arXiv:1205.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping Null Polygon Wilson Loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    A. Sever, P. Vieira and T. Wang, OPE for Super Loops, JHEP 11 (2011) 051 [arXiv:1108.1575] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for \( \mathcal{N}=4 \) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix IV. Gluons and Fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A.V. Belitsky, S.E. Derkachov and A.N. Manashov, Quantum mechanics of null polygonal Wilson loops, Nucl. Phys. B 882 (2014) 303 [arXiv:1401.7307] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    A.V. Belitsky, Nonsinglet pentagons and NMHV amplitudes, Nucl. Phys. B 896 (2015) 493 [arXiv:1407.2853] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A.V. Belitsky, Fermionic pentagons and NMHV hexagon, Nucl. Phys. B 894 (2015) 108 [arXiv:1410.2534] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes, JHEP 08 (2015) 018 [arXiv:1412.1132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes II. Form Factors and Data analysis, arXiv:1508.02987 [INSPIRE].
  88. [88]
    B. Basso, A. Sever and P. Vieira, Hexagonal Wilson Loops in Planar \( \mathcal{N}=4 \) SYM Theory at Finite Coupling, arXiv:1508.03045 [INSPIRE].
  89. [89]
  90. [90]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys. B 869 (2013) 452 [arXiv:0808.0491] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  92. [92]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP 09 (2011) 032 [arXiv:0911.4708] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].Google Scholar
  94. [94]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    A.V. Belitsky, private communication.Google Scholar
  97. [97]
    F.C.S. Brown, Single-valued multiple polylogarithms in one variable, Compt. Rendus Acad. Sci. Math. 338 (2004) 527.CrossRefzbMATHGoogle Scholar
  98. [98]
    L.J. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  101. [101]
    G. Papathanasiou, Hexagon Wilson Loop OPE and Harmonic Polylogarithms, JHEP 11 (2013) 150 [arXiv:1310.5735] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    G. Papathanasiou, Evaluating the six-point remainder function near the collinear limit, Int. J. Mod. Phys. A 29 (2014) 1450154 [arXiv:1406.1123] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    B. Basso, A. Sever and P. Vieira, in progress.Google Scholar
  105. [105]
    A. Sever, Integrability for scattering amplitudes the six point amplitude at all loops, talk at Amplitudes 2015, Zurich, Switzerland, 6–10 July 2015, http://amp15.itp.phys.ethz.ch/talks/Sever.pdf.
  106. [106]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  107. [107]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  108. [108]
    J. Ablinger, J. Blumlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  109. [109]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    N. Arkani-Hamed, S. Caron-Huot and J. Trnka, private communication.Google Scholar
  111. [111]
    L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, to appear.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Lance J. Dixon
    • 1
    • 2
  • Matt von Hippel
    • 3
    Email author
  • Andrew J. McLeod
    • 1
  1. 1.SLAC National Accelerator LaboratoryStanford UniversityStanfordU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations