Status and prospects of the nMSSM after LHC Run-1

Open Access
Regular Article - Theoretical Physics

Abstract

The new minimal supersymmetric standard model (nMSSM), a variant of the general next to minimal supersymmetric standard model (NMSSM) without Z3 symmetry, features a naturally light singlino with a mass below 75 GeV. In light of the new constraints from LHC Run-1 on the Higgs couplings, sparticles searches and flavour observables, we define the parameter space of the model which is compatible with both collider and dark matter (DM) properties. Among the regions compatible with these constraints, implemented through NMSSMTools, SModelS and MadAnalysis5, only one with a singlino lightest supersymmetric particle (LSP) with a mass around 5 GeV can explain all the DM abundance of the universe, while heavier mixed singlinos can only form one of the DM components. Typical collider signatures for each region of the parameter space are investigated. In particular, the decay of the 125 GeV Higgs into light scalars and/or pseudoscalars and the decay of the heavy Higgs into charginos and neutralinos, provide distinctive signatures of the model. Moreover, the sfermion decays usually proceed through heavier neutralinos rather than directly into the LSP, as the couplings to the singlino are suppressed. We also show that direct detection searches are complementary to collider ones, and that a future ton-scale detector could completely probe the region of parameter space with a LSP mass around 65 GeV.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and fine tuning in the NMSSM: implications of early LHC results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].CrossRefMATHGoogle Scholar
  10. [10]
    M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-supersymmetry model, Phys. Rev. D 88 (2013) 075003 [arXiv:1208.0833] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K. Agashe, Y. Cui and R. Franceschini, Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM, JHEP 02 (2013) 031 [arXiv:1209.2115] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Cheng, J. Li, T. Li and Q.-S. Yan, Natural NMSSM confronting with the LHC7-8, Phys. Rev. D 89 (2014) 015015 [arXiv:1304.3182] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D. Kim, P. Athron, C. Balázs, B. Farmer and E. Hutchison, Bayesian naturalness of the CMSSM and CNMSSM, Phys. Rev. D 90 (2014) 055008 [arXiv:1312.4150] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Fowlie, Is the CNMSSM more credible than the CMSSM?, Eur. Phys. J. C 74 (2014) 3105 [arXiv:1407.7534] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    J.E. Kim and H.P. Nilles, The μ-problem and the strong CP-problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Munir, L. Roszkowski and S. Trojanowski, Simultaneous enhancement in γγ, \( b\overline{b} \) and τ + τ rates in the NMSSM with nearly degenerate scalar and pseudoscalar Higgs bosons, Phys. Rev. D 88 (2013) 055017 [arXiv:1305.0591] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Bélanger, V. Bizouard and G. Chalons, Boosting Higgs boson decays into gamma and a Z in the NMSSM, Phys. Rev. D 89 (2014) 095023 [arXiv:1402.3522] [INSPIRE].ADSGoogle Scholar
  19. [19]
    U. Ellwanger and A.M. Teixeira, NMSSM with a singlino LSP: possible challenges for searches for supersymmetry at the LHC, JHEP 10 (2014) 113 [arXiv:1406.7221] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K.S. Jeong, Y. Shoji and M. Yamaguchi, Higgs mixing in the NMSSM and light Higgsinos, JHEP 11 (2014) 148 [arXiv:1407.0955] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Discovery prospects for NMSSM Higgs bosons at the high-energy Large Hadron Collider, Phys. Rev. D 90 (2014) 095014 [arXiv:1408.1120] [INSPIRE].ADSGoogle Scholar
  22. [22]
    U. Ellwanger and A.M. Teixeira, Excessive Higgs pair production with little MET from squarks and gluinos in the NMSSM, JHEP 04 (2015) 172 [arXiv:1412.6394] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N.-E. Bomark, S. Moretti and L. Roszkowski, Detection prospects of light NMSSM Higgs pseudoscalar via cascades of heavier scalars from vector boson fusion and Higgs-strahlung, arXiv:1503.04228 [INSPIRE].
  24. [24]
    A. Chakraborty, D.K. Ghosh, S. Mondal, S. Poddar and D. Sengupta, Probing the NMSSM via Higgs boson signatures from stop cascade decays at the LHC, Phys. Rev. D 91 (2015) 115018 [arXiv:1503.07592] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C.T. Potter, Natural NMSSM with a light singlet Higgs and singlino LSP, arXiv:1505.05554 [INSPIRE].
  26. [26]
    D. Das, U. Ellwanger and A.M. Teixeira, Modified signals for supersymmetry in the NMSSM with a singlino-like LSP, JHEP 04 (2012) 067 [arXiv:1202.5244] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Hugonie, G. Bélanger and A. Pukhov, Dark matter in the constrained NMSSM, JCAP 11 (2007) 009 [arXiv:0707.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Bélanger, C. Hugonie and A. Pukhov, Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM, JCAP 01 (2009) 023 [arXiv:0811.3224] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    U. Ellwanger and C. Hugonie, The semi-constrained NMSSM satisfying bounds from the LHC, LUX and Planck, JHEP 08 (2014) 046 [arXiv:1405.6647] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Albornoz Vasquez, G. Bélanger and C. Boehm, Astrophysical limits on light NMSSM neutralinos, Phys. Rev. D 84 (2011) 095008 [arXiv:1107.1614] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Albornoz Vasquez, G. Bélanger, J. Billard and F. Mayet, Probing neutralino dark matter in the MSSM and the NMSSM with directional detection, Phys. Rev. D 85 (2012) 055023 [arXiv:1201.6150] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Panagiotakopoulos and K. Tamvakis, New minimal extension of MSSM, Phys. Lett. B 469 (1999) 145 [hep-ph/9908351] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Panagiotakopoulos and A. Pilaftsis, Higgs scalars in the minimal nonminimal supersymmetric standard model, Phys. Rev. D 63 (2001) 055003 [hep-ph/0008268] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phenomenology of a new minimal supersymmetric extension of the standard model, Phys. Rev. D 63 (2001) 055009 [hep-ph/0009125] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Panagiotakopoulos and A. Pilaftsis, Light charged Higgs boson and supersymmetry, Phys. Lett. B 505 (2001) 184 [hep-ph/0101266] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Menon, D.E. Morrissey and C.E.M. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Barger, P. Langacker and H.-S. Lee, Lightest neutralino in extensions of the MSSM, Phys. Lett. B 630 (2005) 85 [hep-ph/0508027] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    V. Barger, P. Langacker and G. Shaughnessy, Neutralino signatures of the singlet extended MSSM, Phys. Lett. B 644 (2007) 361 [hep-ph/0609068] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V. Barger, P. Langacker and G. Shaughnessy, Collider signatures of singlet extended Higgs sectors, Phys. Rev. D 75 (2007) 055013 [hep-ph/0611239] [INSPIRE].ADSGoogle Scholar
  45. [45]
    V. Barger et al., Recoil detection of the lightest neutralino in MSSM singlet extensions, Phys. Rev. D 75 (2007) 115002 [hep-ph/0702036] [INSPIRE].ADSGoogle Scholar
  46. [46]
    C. Balázs, M. Carena, A. Freitas and C.E.M. Wagner, Phenomenology of the NMSSM from colliders to cosmology, JHEP 06 (2007) 066 [arXiv:0705.0431] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S.W. Ham, J.O. Im and S.K. Oh, Electroweak phase transition in the MNMSSM with explicit CP-violation, arXiv:0707.4543 [INSPIRE].
  48. [48]
    S.J. Huber and T. Konstandin, Production of gravitational waves in the NMSSM, JCAP 05 (2008) 017 [arXiv:0709.2091] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    E.J. Chun and P. Roy, Dirac leptogenesis in extended NMSSM, JHEP 06 (2008) 089 [arXiv:0803.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S.W. Ham, J.O. Im and S.K. Oh, Neutral Higgs bosons in the MNMSSM with explicit CP-violation, Eur. Phys. J. C 58 (2008) 579 [arXiv:0805.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Cao, H.E. Logan and J.M. Yang, Experimental constraints on NMSSM and implications on its phenomenology, Phys. Rev. D 79 (2009) 091701 [arXiv:0901.1437] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Cao, K.-i. Hikasa, W. Wang, J.M. Yang and L.-X. Yu, SUSY dark matter in light of CDMS II results: a comparative study for different models, JHEP 07 (2010) 044 [arXiv:1005.0761] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    K. Ishikawa, T. Kitahara and M. Takimoto, Singlino resonant dark matter and 125 GeV Higgs boson in high-scale supersymmetry, Phys. Rev. Lett. 113 (2014) 131801 [arXiv:1405.7371] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Hesselbach, D.J. Miller, G. Moortgat-Pick, R. Nevzorov and M. Trusov, Theoretical upper bound on the mass of the LSP in the MNSSM, Phys. Lett. B 662 (2008) 199 [arXiv:0712.2001] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    U. Ellwanger and C. Hugonie, NMSPEC: a Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Kraml et al., SModelS v1.0: a short user guide, arXiv:1412.1745 [INSPIRE].
  58. [58]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    B. Dumont et al., Toward a public analysis database for LHC new physics searches using MadAnalysis 5, Eur. Phys. J. C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  64. [64]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G. Chalons and A. Semenov, Loop-induced photon spectral lines from neutralino annihilation in the NMSSM, JHEP 12 (2011) 055 [arXiv:1110.2064] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  66. [66]
    D. Das, U. Ellwanger and P. Mitropoulos, A 130 GeV photon line from dark matter annihilation in the NMSSM, JCAP 08 (2012) 003 [arXiv:1206.2639] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Chalons, M.J. Dolan and C. McCabe, Neutralino dark matter and the Fermi gamma-ray lines, JCAP 02 (2013) 016 [arXiv:1211.5154] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G.F. Giudice and A. Masiero, A natural solution to the μ-problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Vilenkin, Cosmic strings and domain walls, Phys. Rept. 121 (1985) 263 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    S.A. Abel, S. Sarkar and P.L. White, On the cosmological domain wall problem for the minimally extended supersymmetric standard model, Nucl. Phys. B 454 (1995) 663 [hep-ph/9506359] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S.A. Abel and P.L. White, Baryogenesis from domain walls in the next-to-minimal supersymmetric standard model, Phys. Rev. D 52 (1995) 4371 [hep-ph/9505241] [INSPIRE].ADSGoogle Scholar
  72. [72]
    H.P. Nilles, M. Srednicki and D. Wyler, Constraints on the stability of mass hierarchies in supergravity, Phys. Lett. B 124 (1983) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.B. Lahanas, Light singlet, gauge hierarchy and supergravity, Phys. Lett. B 124 (1983) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    U. Ellwanger, Nonrenormalizable interactions from supergravity, quantum corrections and effective low-energy theories, Phys. Lett. B 133 (1983) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    H.P. Nilles and N. Polonsky, Gravitational divergences as a mediator of supersymmetry breaking, Phys. Lett. B 412 (1997) 69 [hep-ph/9707249] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J. Bagger and E. Poppitz, Destabilizing divergences in supergravity coupled supersymmetric theories, Phys. Rev. Lett. 71 (1993) 2380 [hep-ph/9307317] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    V. Jain, On destabilizing divergencies in supergravity models, Phys. Lett. B 351 (1995) 481 [hep-ph/9407382] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Bagger, E. Poppitz and L. Randall, Destabilizing divergences in supergravity theories at two loops, Nucl. Phys. B 455 (1995) 59 [hep-ph/9505244] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    C. Panagiotakopoulos and K. Tamvakis, Stabilized NMSSM without domain walls, Phys. Lett. B 446 (1999) 224 [hep-ph/9809475] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  81. [81]
    F. Staub et al., Higgs mass predictions of public NMSSM spectrum generators, arXiv:1507.05093 [INSPIRE].
  82. [82]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  83. [83]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1509.00389 [INSPIRE].
  84. [84]
    Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582 [INSPIRE].
  85. [85]
    N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  87. [87]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  92. [92]
    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  94. [94]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  96. [96]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].
  97. [97]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].
  98. [98]
    D. Sengupta and S. Kulkarni, MadAnalysis 5 implementation of CMS-SUS-13-016, doi: 10.7484/INSPIREHEP.DATA.ZC3J.646F.
  99. [99]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with two opposite sign leptons, large number of jets, b-tagged jets, and large missing transverse energy, CMS-PAS-SUS-13-016 (2013).
  100. [100]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  103. [103]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  106. [106]
    X.-J. Bi, X.-G. He and Q. Yuan, Parameters in a class of leptophilic models from PAMELA, ATIC and FERMI, Phys. Lett. B 678 (2009) 168 [arXiv:0903.0122] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Cirelli and G. Giesen, Antiprotons from dark matter: current constraints and future sensitivities, JCAP 04 (2013) 015 [arXiv:1301.7079] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    ATLAS collaboration, Search for Higgs bosons decaying to aa in the μμτ τ final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, Phys. Rev. D 92 (2015) 052002 [arXiv:1505.01609] [INSPIRE].
  109. [109]
    CMS collaboration, A search for pair production of new light bosons decaying into muons, Phys. Lett. B 752 (2016) 146 [arXiv:1506.00424] [INSPIRE].
  110. [110]
    N.-E. Bomark, S. Moretti, S. Munir and L. Roszkowski, A light NMSSM pseudoscalar Higgs boson at the LHC redux, JHEP 02 (2015) 044 [arXiv:1409.8393] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].
  112. [112]
    F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].ADSGoogle Scholar
  113. [113]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  114. [114]
    S. Liebler, Neutral Higgs production at proton colliders in the CP-conserving NMSSM, Eur. Phys. J. C 75 (2015) 210 [arXiv:1502.07972] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  116. [116]
    CMS collaboration, Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in \( {\ell}^{+}{\ell}^{-}b\overline{b} \) final states, Phys. Lett. B 748 (2015) 221 [arXiv:1504.04710] [INSPIRE].
  117. [117]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  118. [118]
    CMS collaboration, Searches for heavy Higgs bosons in two-Higgs-doublet models and for tch decay using multilepton and diphoton final states in pp collisions at 8TeV, Phys. Rev. D 90 (2014) 112013 [arXiv:1410.2751] [INSPIRE].
  119. [119]
    LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  120. [120]
    V. Barger, T. Han and D.G.E. Walker, Top quark pairs at high invariant mass: a model-independent discriminator of new physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    G. Bélanger, D. Ghosh, R. Godbole and S. Kulkarni, Light stop in the MSSM after LHC Run 1, JHEP 09 (2015) 214 [arXiv:1506.00665] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].
  124. [124]
    B. Dumont, B. Fuks and C. Wymant, MadAnalysis 5 implementation of CMS-SUS-13-011: search for stops in the single lepton final state at 8 TeV, doi: 10.7484/INSPIREHEP.DATA.LR5T.2RR3.
  125. [125]
    ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2014) 096 [arXiv:1407.0350] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • D. Barducci
    • 1
  • G. Bélanger
    • 1
  • C. Hugonie
    • 2
  • A. Pukhov
    • 3
  1. 1.LAPTh, Université de Savoie Mont Blanc, CNRSAnnecy-le-VieuxFrance
  2. 2.LUPM, UMR 5299, CNRS, Université de MontpellierMontpellierFrance
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations