Skip to main content

The spectra of type IIB flux compactifications at large complex structure

A preprint version of the article is available at arXiv.

Abstract

We compute the spectra of the Hessian matrix, \( \mathrm{\mathscr{H}} \), and the matrix \( \mathrm{\mathcal{M}} \) that governs the critical point equation of the low-energy effective supergravity, as a function of the complex structure and axio-dilaton moduli space in type IIB flux compactifications at large complex structure. We find both spectra analytically in an h 1,2 + 3 real-dimensional subspace of the moduli space, and show that they exhibit a universal structure with highly degenerate eigenvalues, independently of the choice of flux, the details of the compactification geometry, and the number of complex structure moduli. In this subspace, the spectrum of the Hessian matrix contains no tachyons, but there are also no critical points. We show numerically that the spectra of \( \mathrm{\mathscr{H}} \) and \( \mathrm{\mathcal{M}} \) remain highly peaked over a large fraction of the sampled moduli space of explicit Calabi-Yau compactifications with 2 to 5 complex structure moduli. In these models, the scale of the supersymmetric contribution to the scalar masses is strongly linearly correlated with the value of the superpotential over almost the entire moduli space, with particularly strong correlations arising for g s < 1. We contrast these results with the expectations from the much-used continuous flux approximation, and comment on the applicability of Random Matrix Theory to the statistical modelling of the string theory landscape.

References

  1. [1]

    M. Graña and J. Polchinski, Supersymmetric three form flux perturbations on AdS 5, Phys. Rev. D 63 (2001) 026001 [hep-th/0009211] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    S.S. Gubser, Supersymmetry and F-theory realization of the deformed conifold with three form flux, hep-th/0010010 [INSPIRE].

  3. [3]

    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. [4]

    O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. [5]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. [6]

    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  8. [8]

    F. Denef, M.R. Douglas and S. Kachru, Physics of String Flux Compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].

  10. [10]

    A. Maharana and E. Palti, Models of Particle Physics from Type IIB String Theory and F-theory: A Review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  11. [11]

    A.N. Schellekens, Life at the Interface of Particle Physics and String Theory, Rev. Mod. Phys. 85 (2013) 1491 [arXiv:1306.5083] [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    P.K. Tripathy and S.P. Trivedi, Compactification with flux on K3 and tori, JHEP 03 (2003) 028 [hep-th/0301139] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  13. [13]

    D. Martinez-Pedrera, D. Mehta, M. Rummel and A. Westphal, Finding all flux vacua in an explicit example, JHEP 06 (2013) 110 [arXiv:1212.4530] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  14. [14]

    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  15. [15]

    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  16. [16]

    F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 03 (2005) 061 [hep-th/0411183] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  17. [17]

    T. Eguchi and Y. Tachikawa, Distribution of flux vacua around singular points in Calabi-Yau moduli space, JHEP 01 (2006) 100 [hep-th/0510061] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  18. [18]

    E.P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Math. Proc. Cambridge Philos. Soc. 47 (1951) 548.

    Article  Google Scholar 

  19. [19]

    M. Mehta, Random Matrices, Academic Press, Boston U.S.A. (1991).

    MATH  Google Scholar 

  20. [20]

    P. Deift, Universality for mathematical and physical systems, math-ph/0603038.

  21. [21]

    A.B.J. Kuijlaars, Universality, arXiv:1103.5922.

  22. [22]

    E.P. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. Math. 67 (1958) 325.

    MATH  MathSciNet  Article  Google Scholar 

  23. [23]

    J.H. Schenker and H. Schulz-Baldes, Semicircle law and freeness for random matrices with symmetries or correlations, math-ph/0505003.

  24. [24]

    K. Hofmann-Credner and M. Stolz, Wigner theorems for random matrices with dependent entries: Ensembles associated to symmetric spaces and sample covariance matrices, arXiv:0707.2333.

  25. [25]

    D. Marsh, L. McAllister and T. Wrase, The Wasteland of Random Supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  26. [26]

    X. Chen, G. Shiu, Y. Sumitomo and S.H.H. Tye, A Global View on The Search for de-Sitter Vacua in (type IIA) String Theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  27. [27]

    T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric Vacua in Random Supergravity, JHEP 01 (2013) 136 [arXiv:1207.2763] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  28. [28]

    K. Sousa and P. Ortiz, Perturbative Stability along the Supersymmetric Directions of the Landscape, JCAP 02 (2015) 017 [arXiv:1408.6521] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  29. [29]

    A. Kobakhidze and L. Mersini-Houghton, Birth of the universe from the landscape of string theory, Eur. Phys. J. C 49 (2007) 869 [hep-th/0410213] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  30. [30]

    A. Aazami and R. Easther, Cosmology from random multifield potentials, JCAP 03 (2006) 013 [hep-th/0512050] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  31. [31]

    R. Easther and L. McAllister, Random matrices and the spectrum of N-flation, JCAP 05 (2006) 018 [hep-th/0512102] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  32. [32]

    F.G. Pedro and A. Westphal, The Scale of Inflation in the Landscape, Phys. Lett. B 739 (2014) 439 [arXiv:1303.3224] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  33. [33]

    C. Long, L. McAllister and P. McGuirk, Heavy Tails in Calabi-Yau Moduli Spaces, JHEP 10 (2014) 187 [arXiv:1407.0709] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  34. [34]

    M.C.D. Marsh, L. McAllister, E. Pajer and T. Wrase, Charting an Inflationary Landscape with Random Matrix Theory, JCAP 11 (2013) 040 [arXiv:1307.3559] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    T.C. Bachlechner, C. Long and L. McAllister, Planckian Axions in String Theory, arXiv:1412.1093 [INSPIRE].

  36. [36]

    T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, Chaotic inflation with kinetic alignment of axion fields, Phys. Rev. D 91 (2015) 023520 [arXiv:1404.7496] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    T. Battefeld and C. Modi, Local random potentials of high differentiability to model the Landscape, JCAP 03 (2015) 010 [arXiv:1409.5135] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  38. [38]

    A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 [INSPIRE].

    Article  ADS  Google Scholar 

  39. [39]

    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  40. [40]

    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].

  41. [41]

    M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A Note on the Magnitude of the Flux Superpotential, JHEP 01 (2014) 027 [arXiv:1310.6694] [INSPIRE].

    Article  ADS  Google Scholar 

  42. [42]

    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  43. [43]

    A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  44. [44]

    L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  45. [45]

    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  46. [46]

    M.C.D. Marsh, B. Vercnocke and T. Wrase, Decoupling and de Sitter Vacua in Approximate No-Scale Supergravities, JHEP 05 (2015) 081 [arXiv:1411.6625] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  47. [47]

    M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  48. [48]

    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  49. [49]

    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  50. [50]

    P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].

    Article  ADS  Google Scholar 

  51. [51]

    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-Brane Chaotic Inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  52. [52]

    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and Backreaction in F-term Axion Monodromy Inflation, Nucl. Phys. B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE].

    Article  ADS  Google Scholar 

  53. [53]

    H. Hayashi, R. Matsuda and T. Watari, Issues in Complex Structure Moduli Inflation, arXiv:1410.7522 [INSPIRE].

  54. [54]

    A.P. Braun, N. Johansson, M. Larfors and N.-O. Walliser, Restrictions on infinite sequences of type IIB vacua, JHEP 10 (2011) 091 [arXiv:1108.1394] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. C. David Marsh.

Additional information

ArXiv ePrint: 1509.06761

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brodie, C., Marsh, M.C.D. The spectra of type IIB flux compactifications at large complex structure. J. High Energ. Phys. 2016, 37 (2016). https://doi.org/10.1007/JHEP01(2016)037

Download citation

Keywords

  • Flux compactifications
  • Supergravity Models