Linear inflation from quartic potential

  • Kristjan KannikeEmail author
  • Antonio Racioppi
  • Martti Raidal
Open Access
Regular Article - Theoretical Physics


We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton’s non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.


Cosmology of Theories beyond the SM Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
  2. [2]
    BICEP2, Planck collaboration, P. Ade et al., Joint analysis of BICEP2/KeckArray and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].
  3. [3]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  4. [4]
    J. Martin, C. Ringeval and V. Vennin, Encyclopædia inflationaris, Phys. Dark Univ. 5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    L. Boubekeur and D. Lyth, Hilltop inflation, JCAP 07 (2005) 010 [hep-ph/0502047] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Rinaldi, L. Vanzo, S. Zerbini and G. Venturi, Inflationary quasi-scale invariant attractors, arXiv:1505.03386 [INSPIRE].
  8. [8]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.N. Abazajian et al., Inflation physics from the cosmic microwave background and large scale structure, Astropart. Phys. 63 (2015) 55 [arXiv:1309.5381] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  13. [13]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  14. [14]
    W.A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics Ontake Mountain, August 27-September 2, Japan (1995).Google Scholar
  15. [15]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    A.D. Linde, Coleman-Weinberg theory and a new inflationary universe scenario, Phys. Lett. B 114 (1982) 431 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Primordial supersymmetric inflation, Nucl. Phys. B 221 (1983) 524 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Fluctuations in a supersymmetric inflationary universe, Phys. Lett. B 120 (1983) 331 [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    R.F. Langbein, K. Langfeld, H. Reinhardt and L. von Smekal, Natural slow roll inflation, Mod. Phys. Lett. A 11 (1996) 631 [hep-ph/9310335] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    P.F. Gonzalez-Diaz, Primordial Kaluza-Klein inflation, Phys. Lett. B 176 (1986) 29 [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    J. Yokoyama, Chaotic new inflation and primordial spectrum of adiabatic fluctuations, Phys. Rev. D 59 (1999) 107303 [INSPIRE].ADSGoogle Scholar
  23. [23]
    M.U. Rehman, Q. Shafi and J.R. Wickman, GUT inflation and proton decay after WMAP5, Phys. Rev. D 78 (2008) 123516 [arXiv:0810.3625] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Barenboim, E.J. Chun and H.M. Lee, Coleman-Weinberg Inflation in light of Planck, Phys. Lett. B 730 (2014) 81 [arXiv:1309.1695] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    N. Okada and Q. Shafi, Observable gravity waves from U(1) BL Higgs and Coleman-Weinberg inflation, arXiv:1311.0921 [INSPIRE].
  26. [26]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    E. Gabrielli et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Kannike, A. Racioppi and M. Raidal, Embedding inflation into the standard model — More evidence for classical scale invariance, JHEP 06 (2014) 154 [arXiv:1405.3987] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    D. Croon, V. Sanz and J. Setford, Goldstone inflation, JHEP 10 (2015) 020 [arXiv:1503.08097] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    D. Croon, V. Sanz and E.R.M. Tarrant, Reheating with a composite Higgs, arXiv:1507.04653 [INSPIRE].
  31. [31]
    G. Panotopoulos, Nonminimal GUT inflation after Planck results, Phys. Rev. D 89 (2014) 047301 [arXiv:1403.0931] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Okada, V.N. ¸enoğuz and Q. Shafi, The observational status of simple inflationary models: an update, arXiv:1403.6403 [INSPIRE].
  33. [33]
    K. Kannike et al., Dynamically induced Planck scale and inflation, JHEP 05 (2015) 065 [arXiv:1502.01334] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    T. Inagaki, R. Nakanishi and S.D. Odintsov, Non-minimal two-loop inflation, Phys. Lett. B 745 (2015) 105 [arXiv:1502.06301] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    A.H. Guth, Eternal inflation and its implications, J. Phys. A 40 (2007) 6811 [hep-th/0702178] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    T. Chiba and M. Yamaguchi, Extended slow-roll conditions and rapid-roll conditions, JCAP 10 (2008) 021 [arXiv:0807.4965] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    T. Chiba and M. Yamaguchi, Extended slow-roll conditions and primordial fluctuations: multiple scalar fields and generalized gravity, JCAP 01 (2009) 019 [arXiv:0810.5387] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    BICEP2, Keck Array collaboration, P.A.R. Ade et al., BICEP2/Keck Array V: measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array, Astrophys. J. 811 (2015) 126 [arXiv:1502.00643] [INSPIRE].
  40. [40]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  41. [41]
    D. Escobar, A. Landete, F. Marchesano and D. Regalado, Large field inflation from D-branes, arXiv:1505.07871 [INSPIRE].
  42. [42]
    C. Csáki, N. Kaloper, J. Serra and J. Terning, Inflation from broken scale invariance, Phys. Rev. Lett. 113 (2014) 161302 [arXiv:1406.5192] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    L. Dai, M. Kamionkowski and J. Wang, Reheating constraints to inflationary models, Phys. Rev. Lett. 113 (2014) 041302 [arXiv:1404.6704] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    J.B. Muñoz and M. Kamionkowski, Equation-of-state parameter for reheating, Phys. Rev. D 91 (2015) 043521 [arXiv:1412.0656] [INSPIRE].ADSGoogle Scholar
  45. [45]
    V. Domcke and J. Heisig, Constraints on the reheating temperature from sizable tensor modes, Phys. Rev. D 92 (2015) 103515 [arXiv:1504.00345] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Kristjan Kannike
    • 1
    Email author
  • Antonio Racioppi
    • 1
  • Martti Raidal
    • 1
    • 2
  1. 1.National Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations