Advertisement

Linear inflation from quartic potential

  • Kristjan KannikeEmail author
  • Antonio Racioppi
  • Martti Raidal
Open Access
Regular Article - Theoretical Physics

Abstract

We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton’s non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
  2. [2]
    BICEP2, Planck collaboration, P. Ade et al., Joint analysis of BICEP2/KeckArray and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].
  3. [3]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  4. [4]
    J. Martin, C. Ringeval and V. Vennin, Encyclopædia inflationaris, Phys. Dark Univ. 5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    L. Boubekeur and D. Lyth, Hilltop inflation, JCAP 07 (2005) 010 [hep-ph/0502047] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Rinaldi, L. Vanzo, S. Zerbini and G. Venturi, Inflationary quasi-scale invariant attractors, arXiv:1505.03386 [INSPIRE].
  8. [8]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.N. Abazajian et al., Inflation physics from the cosmic microwave background and large scale structure, Astropart. Phys. 63 (2015) 55 [arXiv:1309.5381] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  13. [13]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  14. [14]
    W.A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics Ontake Mountain, August 27-September 2, Japan (1995).Google Scholar
  15. [15]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    A.D. Linde, Coleman-Weinberg theory and a new inflationary universe scenario, Phys. Lett. B 114 (1982) 431 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Primordial supersymmetric inflation, Nucl. Phys. B 221 (1983) 524 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Fluctuations in a supersymmetric inflationary universe, Phys. Lett. B 120 (1983) 331 [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    R.F. Langbein, K. Langfeld, H. Reinhardt and L. von Smekal, Natural slow roll inflation, Mod. Phys. Lett. A 11 (1996) 631 [hep-ph/9310335] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    P.F. Gonzalez-Diaz, Primordial Kaluza-Klein inflation, Phys. Lett. B 176 (1986) 29 [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    J. Yokoyama, Chaotic new inflation and primordial spectrum of adiabatic fluctuations, Phys. Rev. D 59 (1999) 107303 [INSPIRE].ADSGoogle Scholar
  23. [23]
    M.U. Rehman, Q. Shafi and J.R. Wickman, GUT inflation and proton decay after WMAP5, Phys. Rev. D 78 (2008) 123516 [arXiv:0810.3625] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Barenboim, E.J. Chun and H.M. Lee, Coleman-Weinberg Inflation in light of Planck, Phys. Lett. B 730 (2014) 81 [arXiv:1309.1695] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    N. Okada and Q. Shafi, Observable gravity waves from U(1) BL Higgs and Coleman-Weinberg inflation, arXiv:1311.0921 [INSPIRE].
  26. [26]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    E. Gabrielli et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Kannike, A. Racioppi and M. Raidal, Embedding inflation into the standard model — More evidence for classical scale invariance, JHEP 06 (2014) 154 [arXiv:1405.3987] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    D. Croon, V. Sanz and J. Setford, Goldstone inflation, JHEP 10 (2015) 020 [arXiv:1503.08097] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    D. Croon, V. Sanz and E.R.M. Tarrant, Reheating with a composite Higgs, arXiv:1507.04653 [INSPIRE].
  31. [31]
    G. Panotopoulos, Nonminimal GUT inflation after Planck results, Phys. Rev. D 89 (2014) 047301 [arXiv:1403.0931] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Okada, V.N. ¸enoğuz and Q. Shafi, The observational status of simple inflationary models: an update, arXiv:1403.6403 [INSPIRE].
  33. [33]
    K. Kannike et al., Dynamically induced Planck scale and inflation, JHEP 05 (2015) 065 [arXiv:1502.01334] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    T. Inagaki, R. Nakanishi and S.D. Odintsov, Non-minimal two-loop inflation, Phys. Lett. B 745 (2015) 105 [arXiv:1502.06301] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    A.H. Guth, Eternal inflation and its implications, J. Phys. A 40 (2007) 6811 [hep-th/0702178] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    T. Chiba and M. Yamaguchi, Extended slow-roll conditions and rapid-roll conditions, JCAP 10 (2008) 021 [arXiv:0807.4965] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    T. Chiba and M. Yamaguchi, Extended slow-roll conditions and primordial fluctuations: multiple scalar fields and generalized gravity, JCAP 01 (2009) 019 [arXiv:0810.5387] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    BICEP2, Keck Array collaboration, P.A.R. Ade et al., BICEP2/Keck Array V: measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array, Astrophys. J. 811 (2015) 126 [arXiv:1502.00643] [INSPIRE].
  40. [40]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  41. [41]
    D. Escobar, A. Landete, F. Marchesano and D. Regalado, Large field inflation from D-branes, arXiv:1505.07871 [INSPIRE].
  42. [42]
    C. Csáki, N. Kaloper, J. Serra and J. Terning, Inflation from broken scale invariance, Phys. Rev. Lett. 113 (2014) 161302 [arXiv:1406.5192] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    L. Dai, M. Kamionkowski and J. Wang, Reheating constraints to inflationary models, Phys. Rev. Lett. 113 (2014) 041302 [arXiv:1404.6704] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    J.B. Muñoz and M. Kamionkowski, Equation-of-state parameter for reheating, Phys. Rev. D 91 (2015) 043521 [arXiv:1412.0656] [INSPIRE].ADSGoogle Scholar
  45. [45]
    V. Domcke and J. Heisig, Constraints on the reheating temperature from sizable tensor modes, Phys. Rev. D 92 (2015) 103515 [arXiv:1504.00345] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Kristjan Kannike
    • 1
    Email author
  • Antonio Racioppi
    • 1
  • Martti Raidal
    • 1
    • 2
  1. 1.National Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations