Advertisement

The QCD axion, precisely

  • Giovanni Grilli di Cortona
  • Edward Hardy
  • Javier Pardo Vega
  • Giovanni Villadoro
Open Access
Regular Article - Theoretical Physics

Abstract

We show how several properties of the QCD axion can be extracted at high precision using only first principle QCD computations. By combining NLO results obtained in chiral perturbation theory with recent Lattice QCD results the full axion potential, its mass and the coupling to photons can be reconstructed with percent precision. Axion couplings to nucleons can also be derived reliably, with uncertainties smaller than ten percent. The approach presented here allows the precision to be further improved as uncertainties on the light quark masses and the effective theory couplings are reduced. We also compute the finite temperature dependence of the axion potential and its mass up to the crossover region. For higher temperature we point out the unreliability of the conventional instanton approach and study its impact on the computation of the axion relic abundance.

Keywords

Beyond Standard Model Chiral Lagrangians Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].
  2. [2]
    J. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].ADSGoogle Scholar
  3. [3]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
  9. [9]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0611350] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD axion with black holes and gravitational waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    ADMX collaboration, S.J. Asztalos et al., A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].
  19. [19]
    E. Armengaud et al., Conceptual design of the International AXion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].
  20. [20]
    D. Horns, J. Jaeckel, A. Lindner, A. Lobanov, J. Redondo and A. Ringwald, Searching for WISPy cold dark matter with a dish antenna, JCAP 04 (2013) 016 [arXiv:1212.2970] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev. X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].Google Scholar
  22. [22]
    A. Arvanitaki and A.A. Geraci, Resonantly detecting axion-mediated forces with nuclear magnetic resonance, Phys. Rev. Lett. 113 (2014) 161801 [arXiv:1403.1290] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    P. Sikivie, Experimental tests of the invisible axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [INSPIRE].
  24. [24]
    L. Krauss, J. Moody, F. Wilczek and D.E. Morris, Calculations for cosmic axion detection, Phys. Rev. Lett. 55 (1985) 1797 [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    M.I. Buchoff et al., QCD chiral transition, U(1)A symmetry and the Dirac spectrum using domain wall fermions, Phys. Rev. D 89 (2014) 054514 [arXiv:1309.4149] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Trunin, F. Burger, E.-M. Ilgenfritz, M.P. Lombardo and M. Muller-Preussker, Topological susceptibility from N f = 2 + 1 + 1 lattice QCD at nonzero temperature, arXiv:1510.02265 [INSPIRE].
  30. [30]
    E. Berkowitz, M.I. Buchoff and E. Rinaldi, Lattice QCD input for axion cosmology, Phys. Rev. D 92 (2015) 034507 [arXiv:1505.07455] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Borsányi et al., Axion cosmology, lattice QCD and the dilute instanton gas, Phys. Lett. B 752 (2016) 175 [arXiv:1508.06917] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    P. Di Vecchia and G. Veneziano, Chiral dynamics in the large-N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    H. Georgi, D.B. Kaplan and L. Randall, Manifesting the invisible axion at low-energies, Phys. Lett. B 169 (1986) 73 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    L. Ubaldi, Effects of theta on the deuteron binding energy and the triple-alpha process, Phys. Rev. D 81 (2010) 025011 [arXiv:0811.1599] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Spalinski, Chiral corrections to the axion mass, Z. Phys. C 41 (1988) 87 [INSPIRE].Google Scholar
  36. [36]
    TWQCD collaboration, Y.Y. Mao and T.W. Chiu, Topological susceptibility to the one-loop order in chiral perturbation theory, Phys. Rev. D 80 (2009) 034502 [arXiv:0903.2146] [INSPIRE].
  37. [37]
    J. Bijnens and G. Ecker, Mesonic low-energy constants, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    D.B. Kaplan and A.V. Manohar, Current mass ratios of the light quarks, Phys. Rev. Lett. 56 (1986) 2004 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    RM123 collaboration, G.M. de Divitiis et al., Leading isospin breaking effects on the lattice, Phys. Rev. D 87 (2013) 114505 [arXiv:1303.4896] [INSPIRE].
  41. [41]
    MILC collaboration, S. Basak et al., Electromagnetic effects on the light hadron spectrum, J. Phys. Conf. Ser. 640 (2015) 012052 [arXiv:1510.04997] [INSPIRE].
  42. [42]
    R. Horsley et al., Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED, arXiv:1508.06401 [INSPIRE].
  43. [43]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  44. [44]
    F.-K. Guo and U.-G. Meißner, Cumulants of the QCD topological charge distribution, Phys. Lett. B 749 (2015) 278 [arXiv:1506.05487] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    J. Bijnens, L. Girlanda and P. Talavera, The anomalous chiral Lagrangian of order p 6, Eur. Phys. J. C 23 (2002) 539 [hep-ph/0110400] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    J.F. Donoghue, B.R. Holstein and Y.C.R. Lin, Chiral Loops in π 0 , η 0γγ and ηηmixing, Phys. Rev. Lett. 55 (1985) 2766 [Erratum ibid. 61 (1988) 1527] [INSPIRE].
  47. [47]
    B. Ananthanarayan and B. Moussallam, Electromagnetic corrections in the anomaly sector, JHEP 05 (2002) 052 [hep-ph/0205232] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    G.F. Giudice, R. Rattazzi and A. Strumia, Unificaxion, Phys. Lett. B 715 (2012) 142 [arXiv:1204.5465] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    J. Kodaira, QCD higher order effects in polarized electroproduction: flavor singlet coefficient functions, Nucl. Phys. B 165 (1980) 129 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    E.E. Jenkins and A.V. Manohar, Baryon chiral perturbation theory using a heavy fermion Lagrangian, Phys. Lett. B 255 (1991) 558 [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    QCDSF collaboration, G.S. Bali et al., Strangeness contribution to the proton spin from lattice QCD, Phys. Rev. Lett. 108 (2012) 222001 [arXiv:1112.3354] [INSPIRE].
  52. [52]
    M. Engelhardt, Strange quark contributions to nucleon mass and spin from lattice QCD, Phys. Rev. D 86 (2012) 114510 [arXiv:1210.0025] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Abdel-Rehim et al., Disconnected quark loop contributions to nucleon observables in lattice QCD, Phys. Rev. D 89 (2014) 034501 [arXiv:1310.6339] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Bhattacharya, R. Gupta and B. Yoon, Disconnected quark loop contributions to nucleon structure, PoS(LATTICE 2014)141 [arXiv:1503.05975] [INSPIRE].
  55. [55]
    A. Abdel-Rehim et al., Nucleon and pion structure with lattice QCD simulations at physical value of the pion mass, arXiv:1507.04936 [INSPIRE].
  56. [56]
    A. Abdel-Rehim et al., Disconnected quark loop contributions to nucleon observables using N f = 2 twisted clover fermions at the physical value of the light quark mass, arXiv:1511.00433 [INSPIRE].
  57. [57]
    T. Bhattacharya et al., Nucleon charges and electromagnetic form factors from 2+1+1-flavor lattice QCD, Phys. Rev. D 89 (2014) 094502 [arXiv:1306.5435] [INSPIRE].ADSGoogle Scholar
  58. [58]
    JLQCD collaboraiton, N. Yamanaka et al., Nucleon axial and tensor charges with the overlap fermions, talk presented at 33rd International Symposium on Lattice field theory (LATTICE 2015), July 24–30, Kobe, Japan (2015).Google Scholar
  59. [59]
    P. Sikivie, Axion cosmology, Lect. Notes Phys. 741 (2008) 19 [astro-ph/0610440] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    P. Sikivie, Of axions, domain walls and the early universe, Phys. Rev. Lett. 48 (1982) 1156 [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    A. Vilenkin and A.E. Everett, Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    A. Vilenkin, Cosmic strings and domain walls, Phys. Rept. 121 (1985) 263 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  63. [63]
    R.L. Davis, Cosmic axions from cosmic strings, Phys. Lett. B 180 (1986) 225 [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    D.P. Bennett and F.R. Bouchet, Evidence for a scaling solution in cosmic string evolution, Phys. Rev. Lett. 60 (1988) 257 [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    A. Dabholkar and J.M. Quashnock, Pinning down the axion, Nucl. Phys. B 333 (1990) 815 [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    G.R. Vincent, M. Hindmarsh and M. Sakellariadou, Scaling and small scale structure in cosmic string networks, Phys. Rev. D 56 (1997) 637 [astro-ph/9612135] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].ADSGoogle Scholar
  68. [68]
    Z.G. Berezhiani, A.S. Sakharov and M. Yu. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys. 55 (1992) 1063 [Yad. Fiz. 55 (1992) 1918] [INSPIRE].
  69. [69]
    E. Masso, F. Rota and G. Zsembinszki, On axion thermalization in the early universe, Phys. Rev. D 66 (2002) 023004 [hep-ph/0203221] [INSPIRE].ADSGoogle Scholar
  70. [70]
    P. Graf and F.D. Steffen, Thermal axion production in the primordial quark-gluon plasma, Phys. Rev. D 83 (2011) 075011 [arXiv:1008.4528] [INSPIRE].ADSGoogle Scholar
  71. [71]
    A. Salvio, A. Strumia and W. Xue, Thermal axion production, JCAP 01 (2014) 011 [arXiv:1310.6982] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    J.O. Andersen, L.E. Leganger, M. Strickland and N. Su, Three-loop HTL QCD thermodynamics, JHEP 08 (2011) 053 [arXiv:1103.2528] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477 [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    F.C. Hansen and H. Leutwyler, Charge correlations and topological susceptibility in QCD, Nucl. Phys. B 350 (1991) 201 [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    P. Gerber and H. Leutwyler, Hadrons below the chiral phase transition, Nucl. Phys. B 321 (1989) 387 [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  78. [78]
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].CrossRefADSGoogle Scholar
  79. [79]
    A.K. Rebhan, The non-Abelian debye mass at next-to-leading order, Phys. Rev. D 48 (1993) 3967 [hep-ph/9308232] [INSPIRE].MathSciNetADSGoogle Scholar
  80. [80]
    P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].ADSGoogle Scholar
  81. [81]
    K. Kajantie, M. Laine, J. Peisa, A. Rajantie, K. Rummukainen and M.E. Shaposhnikov, Nonperturbative Debye mass in finite temperature QCD, Phys. Rev. Lett. 79 (1997) 3130 [hep-ph/9708207] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    O. Philipsen, Debye screening in the QCD plasma, hep-ph/0010327 [INSPIRE].
  83. [83]
    WHOT-QCD collaboration, Y. Maezawa et al., Heavy-quark free energy, debye mass and spatial string tension at finite temperature in two flavor lattice QCD with Wilson quark action, Phys. Rev. D 75 (2007) 074501 [hep-lat/0702004] [INSPIRE].
  84. [84]
    O. Wantz and E.P.S. Shellard, The topological susceptibility from grand canonical simulations in the interacting instanton liquid model: chiral phase transition and axion mass, Nucl. Phys. B 829 (2010) 110 [arXiv:0908.0324] [INSPIRE].CrossRefADSGoogle Scholar
  85. [85]
    O. Philipsen, The QCD equation of state from the lattice, Prog. Part. Nucl. Phys. 70 (2013) 55 [arXiv:1207.5999] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    S. Borsányi et al., Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  88. [88]
    A.D. Linde, Generation of isothermal density perturbations in the inflationary universe, Phys. Lett. B 158 (1985) 375 [INSPIRE].CrossRefADSGoogle Scholar
  89. [89]
    J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Isocurvature forecast in the anthropic axion window, JCAP 06 (2009) 022 [arXiv:0904.0647] [INSPIRE].CrossRefADSGoogle Scholar
  90. [90]
    F. Sanfilippo, Quark Masses from Lattice QCD, PoS(LATTICE 2014)014 [arXiv:1505.02794] [INSPIRE].
  91. [91]
    RBC and UKQCD Collaboration, R. Mawhinney, NLO and NNLO low energy constants for SU(3) chiral perturbation theory, talk presented at 33rd International Symposium on Lattice field theory (LATTICE 2015), July 24–30, Kobe, Japan (2015).Google Scholar
  92. [92]
    P.A. Boyle et al., The low energy constants of SU(2) partially quenched chiral perturbation theory from N f = 2 + 1 domain wall QCD, arXiv:1511.01950 [INSPIRE].
  93. [93]
    G. Altarelli and G.G. Ross, The anomalous gluon contribution to polarized leptoproduction, Phys. Lett. B 212 (1988) 391 [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Giovanni Grilli di Cortona
    • 1
  • Edward Hardy
    • 2
  • Javier Pardo Vega
    • 1
    • 2
  • Giovanni Villadoro
    • 2
  1. 1.SISSA International School for Advanced Studies and INFN — Sezione di TriesteTriesteItaly
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations