Instanton induced Yukawa couplings from distant E3 and E(-1) instantons

  • Mark D. Goodsell
  • Lukas T. Witkowski
Open Access
Regular Article - Theoretical Physics


We calculate non-perturbative contributions to Yukawa couplings on D3-branes at orbifold singularities due to E3 and fractional E(-1) instantons which do not intersect the visible sector branes. While distant E3 instantons on bulk cycles typically contribute to Yukawa couplings, we find that distant fractional E(-1) can also give rise to new Yukawa couplings. However, fractional E(-1) instantons only induce Yukawa couplings if they are located at a singularity which shares a collapsed homologous two-cycle with the singularity supporting the visible sector. The non-perturbative contributions to Yukawa couplings exhibit a different flavour structure than the tree-level Yukawa couplings and, as a result, they can be sources of flavour violation. This is particularly relevant for schemes of moduli stabilisation which rely on superpotential contributions from E3 instantons, such as KKLT or the Large Volume Scenario. As a byproduct of our analysis, we shed some new light on the properties of annulus diagrams with matter field insertions in stringy instanton calculus.


Intersecting branes models D-branes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  2. [2]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  3. [3]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    M. Bianchi, F. Fucito and J.F. Morales, D-brane instantons on the T 6 /Z(3) orientifold, JHEP 07 (2007) 038 [arXiv:0704.0784] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino Condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    S.A. Abel and M.D. Goodsell, Realistic Yukawa Couplings through Instantons in Intersecting Brane Worlds, JHEP 10 (2007) 034 [hep-th/0612110] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter and T. Weigand, Non-perturbative Yukawa Couplings from String Instantons, Phys. Rev. Lett. 100 (2008) 061602 [arXiv:0707.1871] [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. [13]
    L.E. Ibáñez and A.M. Uranga, Instanton induced open string superpotentials and branes at singularities, JHEP 02 (2008) 103 [arXiv:0711.1316] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    L.E. Ibáñez and R. Richter, Stringy Instantons and Yukawa Couplings in MSSM-like Orientifold Models, JHEP 03 (2009) 090 [arXiv:0811.1583] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    M. Cvetič, J. Halverson and R. Richter, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory, Phys. Rev. D 76 (2007) 086002 [hep-th/0703028] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra, JHEP 06 (2007) 011 [arXiv:0704.1079] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    R. Blumenhagen and M. Schmidt-Sommerfeld, Power Towers of String Instantons for N = 1 Vacua, JHEP 07 (2008) 027 [arXiv:0803.1562] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    R. Blumenhagen, X. Gao, T. Rahn and P. Shukla, A Note on Poly-Instanton Effects in Type IIB Orientifolds on Calabi-Yau Threefolds, JHEP 06 (2012) 162 [arXiv:1205.2485] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    M. Cicoli, F.G. Pedro and G. Tasinato, Poly-instanton Inflation, JCAP 12 (2011) 022 [arXiv:1110.6182] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    M. Cicoli, F.G. Pedro and G. Tasinato, Natural Quintessence in String Theory, JCAP 07 (2012) 044 [arXiv:1203.6655] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    M. Cicoli, A. Maharana, F. Quevedo and C.P. Burgess, de Sitter String Vacua from Dilaton-dependent Non-perturbative Effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    D. Forcella, I. Garcia-Etxebarria and A. Uranga, E3-brane instantons and baryonic operators for D3-branes on toric singularities, JHEP 03 (2009) 041 [arXiv:0806.2291] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) Unification, JHEP 03 (2013) 140 [Erratum ibid. 1307 (2013) 036] [arXiv:1211.6529] [INSPIRE].
  26. [26]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, arXiv:1503.02683.
  28. [28]
    D. Baumann, A. Dymarsky, I.R. Klebanov, J.M. Maldacena, L.P. McAllister and A. Murugan, On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    M. Berg, J.P. Conlon, D. Marsh and L.T. Witkowski, Superpotential de-sequestering in string models, JHEP 02 (2013) 018 [arXiv:1207.1103] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, Adv. Ser. Direct. High Energy Phys. 21 (2010) 244 [hep-ph/9707209] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  32. [32]
    S. Kachru, L. McAllister and R. Sundrum, Sequestering in String Theory, JHEP 10 (2007) 013 [hep-th/0703105] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in String Compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  34. [34]
    G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].ADSGoogle Scholar
  36. [36]
    B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4 − D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    N. Akerblom, R. Blumenhagen, D. Lüst and M. Schmidt-Sommerfeld, Instantons and Holomorphic Couplings in Intersecting D-brane Models, JHEP 08 (2007) 044 [arXiv:0705.2366] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    C. Petersson, Superpotentials From Stringy Instantons Without Orientifolds, JHEP 05 (2008) 078 [arXiv:0711.1837] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    R. Blumenhagen, M. Cvetič, R. Richter and T. Weigand, Lifting D-Instanton Zero Modes by Recombination and Background Fluxes, JHEP 10 (2007) 098 [arXiv:0708.0403] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    M. Billó, M. Frau, I. Pesando, F. Fucito, A. Lerda and A. Liccardo, Classical gauge instantons from open strings, JHEP 02 (2003) 045 [hep-th/0211250] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet. 2., Nucl. Phys. B 289 (1987) 319 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    N. Akerblom, R. Blumenhagen, D. Lüst, E. Plauschinn and M. Schmidt-Sommerfeld, Non-perturbative SQCD Superpotentials from String Instantons, JHEP 04 (2007) 076 [hep-th/0612132] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    J. Polchinski, String Theory. Volume 1: An Introduction to the Bosonic String, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1998).CrossRefzbMATHGoogle Scholar
  48. [48]
    J. Polchinski, String Theory. Volume 2: Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  49. [49]
    J.P. Conlon, M. Goodsell and E. Palti, Anomaly Mediation in Superstring Theory, Fortsch. Phys. 59 (2011) 5 [arXiv:1008.4361] [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  50. [50]
    J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  52. [52]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  53. [53]
    J.P. Conlon, Brane-Antibrane Backreaction in Axion Monodromy Inflation, JCAP 01 (2012) 033 [arXiv:1110.6454] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    D. Mumford, C. Musili, E. Previato and M. Stillmann, Tata Lectures on Theta I, Modern Birkhäuser Classics, Springer, London U.K. (2007).Google Scholar
  56. [56]
    D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    M. Billó, M. Frau, I. Pesando, F. Fucito, A. Lerda and A. Liccardo, Classical gauge instantons from open strings, JHEP 02 (2003) 045 [hep-th/0211250] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHEParisFrance
  2. 2.CNRS, UMR 7589, LPTHEParisFrance
  3. 3.Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations