A problem with δ-functions: stress-energy constraints on bulk-brane matching (with comments on arXiv:1508.01124)

Abstract

We critically assess a recent assertion [1] concerning using δ-functions to analyze how higher-codimension branes back-react on their environment. We also briefly summarize the state of the art: describing how stress-energy balance dictates the components of off-brane stress energy in terms brane tension; how this can modify the standard tension/defect-angle relation for codimension-two sources when dilatons are present; and how it all relates to extra-dimensional searches for a small cosmological constant.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F. Niedermann and R. Schneider, Fine-tuning with Brane-Localized Flux in 6D supergravity, arXiv:1508.01124 [INSPIRE].

  2. [2]

    A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  4. [4]

    S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].

  5. [5]

    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  6. [6]

    C.P. Burgess, The cosmological constant problem: why it’s hard to get dark energy from micro-physics, arXiv:1309.4133 [INSPIRE].

  7. [7]

    H.-P. Nilles, A. Papazoglou and G. Tasinato, Selftuning and its footprints, Nucl. Phys. B 677 (2004) 405 [hep-th/0309042] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  8. [8]

    J. Garriga and M. Porrati, Football shaped extra dimensions and the absence of self-tuning, JHEP 08 (2004) 028 [hep-th/0406158] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  9. [9]

    J. Vinet and J.M. Cline, Codimension-two branes in six-dimensional supergravity and the cosmological constant problem, Phys. Rev. D 71 (2005) 064011 [hep-th/0501098] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. [10]

    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  11. [11]

    C.P. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    C.P. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    C.P. Burgess, R. Diener and M. Williams, The gravity of dark vortices: effective field theory for branes and strings carrying localized flux, JHEP 11 (2015) 049 [arXiv:1506.08095] [INSPIRE].

    Article  ADS  Google Scholar 

  14. [14]

    C.P. Burgess, R. Diener and M. Williams, EFT for vortices with dilaton-dependent localized flux, JHEP 11 (2015) 054 [arXiv:1508.00856] [INSPIRE].

    Article  Google Scholar 

  15. [15]

    Y. Aghababaie et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  16. [16]

    C.P. Burgess, A. Maharana, L. van Nierop, A.A. Nizami and F. Quevedo, On brane back-reaction and de Sitter solutions in higher-dimensional supergravity, JHEP 04 (2012) 018 [arXiv:1109.0532] [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    A.J. Tolley, C.P. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP 03 (2006) 091 [hep-th/0512218] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  18. [18]

    R. Diener and C.P. Burgess, Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events, JHEP 05 (2013) 078 [arXiv:1302.6486] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  19. [19]

    W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [INSPIRE].

    Article  Google Scholar 

  21. [21]

    C.P. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [INSPIRE].

    Article  ADS  Google Scholar 

  22. [22]

    C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    A. Bayntun, C.P. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    M. Peloso, L. Sorbo and G. Tasinato, Standard 4D gravity on a brane in six dimensional flux compactifications, Phys. Rev. D 73 (2006) 104025 [hep-th/0603026] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. [25]

    C.P. Burgess, R. Diener and M. Williams, Self-tuning at large (distances): 4D description of runaway dilaton capture, to appear.

  26. [26]

    C.P. Burgess and L. van Nierop, Technically natural cosmological constant from supersymmetric 6D brane backreaction, Phys. Dark Univ. 2 (2013) 1 [arXiv:1108.0345] [INSPIRE].

    Article  Google Scholar 

  27. [27]

    C.P. Burgess, L. van Nierop, S. Parameswaran, A. Salvio and M. Williams, Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction, JHEP 02 (2013) 120 [arXiv:1210.5405] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    C.P. Burgess, L. van Nierop and M. Williams, Distributed SUSY breaking: dark energy, Newton’s law and the LHC, JHEP 07 (2014) 034 [arXiv:1311.3911] [INSPIRE].

    Article  ADS  Google Scholar 

  29. [29]

    M. Williams, Technically natural vacuum energy at the tip of a supersymmetric teardrop, Phys. Rev. D 89 (2014) 086006 [arXiv:1311.4172] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Williams.

Additional information

ArXiv ePrint: 1509.04201

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burgess, C.P., Diener, R. & Williams, M. A problem with δ-functions: stress-energy constraints on bulk-brane matching (with comments on arXiv:1508.01124). J. High Energ. Phys. 2016, 17 (2016). https://doi.org/10.1007/JHEP01(2016)017

Download citation

Keywords

  • Large Extra Dimensions
  • Solitons Monopoles and Instantons
  • Effective field theories