Journal of High Energy Physics

, 2015:158 | Cite as

Sparticle mass hierarchies, simplified models from SUGRA unification, and benchmarks for LHC Run-II SUSY searches

  • David Francescone
  • Sujeet Akula
  • Baris Altunkaynak
  • Pran Nath
Open Access
Regular Article - Theoretical Physics


Sparticle mass hierarchies contain significant information regarding the origin and nature of supersymmetry breaking. The hierarchical patterns are severely constrained by electroweak symmetry breaking as well as by the astrophysical and particle physics data. They are further constrained by the Higgs boson mass measurement. The sparticle mass hierarchies can be used to generate simplified models consistent with the high scale models. In this work we consider supergravity models with universal boundary conditions for soft parameters at the unification scale as well as supergravity models with nonuniversalities and delineate the list of sparticle mass hierarchies for the five lightest sparticles. Simplified models can be obtained by a truncation of these, retaining a smaller set of lightest particles. The mass hierarchies and their truncated versions enlarge significantly the list of simplified models currently being used in the literature. Benchmarks for a variety of supergravity unified models appropriate for SUSY searches at future colliders are also presented. The signature analysis of two benchmark models has been carried out and a discussion of the searches needed for their discovery at LHC Run-II is given. An analysis of the spin-independent neutralino-proton cross section exhibiting the Higgs boson mass dependence and the hierarchical patterns is also carried out. It is seen that a knowledge of the spin-independent neutralino-proton cross section and the neutralino mass will narrow down the list of the allowed sparticle mass hierarchies. Thus dark matter experiments along with analyses for the LHC Run-II will provide strong clues to the nature of symmetry breaking at the unification scale.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  3. [3]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results and Dark Matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs Boson Discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. Ruiz de Austri and R. Trotta, Global Fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Nath, R.L. Arnowitt and A.H. Chamseddine, Gauge Hierarchy in Supergravity Guts, Nucl. Phys. B 227 (1983) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.L. Arnowitt and P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.E. Ibáñez and G.G. Ross, Supersymmetric Higgs and radiative electroweak breaking, C. R. Phys. 8 (2007) 1013 [hep-ph/0702046] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Buchmueller et al., Higgs and Supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson, Phys. Rev. D 87 (2013) 035017 [arXiv:1210.3019] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Avetisyan et al., Methods and Results for Standard Model Event Generation at \( \sqrt{s}=14 \) TeV, 33TeV and 100TeV Proton Colliders (A Snowmass Whitepaper), arXiv:1308.1636 [INSPIRE].
  23. [23]
    D. Feldman, Z. Liu and P. Nath, The Landscape of Sparticle Mass Hierarchies and Their Signature Space at the LHC, Phys. Rev. Lett. 99 (2007) 251802 [Erratum ibid. 100 (2008) 069902] [arXiv:0707.1873] [INSPIRE].
  24. [24]
    D. Feldman, Z. Liu and P. Nath, Light Higgses at the Tevatron and at the LHC and Observable Dark Matter in SUGRA and D-branes, Phys. Lett. B 662 (2008) 190 [arXiv:0711.4591] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Feldman, Z. Liu and P. Nath, Sparticles at the LHC, JHEP 04 (2008) 054 [arXiv:0802.4085] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low Mass Gluino within the Sparticle Landscape, Implications for Dark Matter and Early Discovery Prospects at LHC-7, Phys. Rev. D 83 (2011) 035005 [arXiv:1011.1246] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry Without Prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry Without Prejudice at the LHC, Eur. Phys. J. C 71 (2011) 1697 [arXiv:1009.2539] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    B. Altunkaynak, B.D. Nelson, L.L. Everett, Y. Rao and I.-W. Kim, Landscape of Supersymmetric Particle Mass Hierarchies in Deflected Mirage Mediation, Eur. Phys. J. Plus 127 (2012) 2 [arXiv:1011.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    W.-Z. Feng and P. Nath, Higgs diphoton rate and mass enhancement with vectorlike leptons and the scale of supersymmetry, Phys. Rev. D 87 (2013) 075018 [arXiv:1303.0289] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Arkani-Hamed et al., MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories, hep-ph/0703088 [INSPIRE].
  33. [33]
    J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-Independent Jets plus Missing Energy Searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D.S.M. Alves, E. Izaguirre and J.G. Wacker, Where the Sidewalk Ends: Jets and Missing Energy Search Strategies for the 7 TeV LHC, JHEP 10 (2011) 012 [arXiv:1102.5338] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    LHC New Physics Working Group collaboration, D.S.M. Alves et al., Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman and A. Weiler, Light Nondegenerate Squarks at the LHC, Phys. Rev. Lett. 110 (2013) 151804 [arXiv:1212.3328] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    CMS collaboration, Interpretation of Searches for Supersymmetry with simplified Models, Phys. Rev. D 88 (2013) 052017 [arXiv:1301.2175] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T. Cohen et al., SUSY Simplified Models at 14, 33 and 100 TeV Proton Colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Anderson, C.-h. Chen, J.F. Gunion, J.D. Lykken, T. Moroi and Y. Yamada, Motivations for and implications of nonuniversal GUT scale boundary conditions for soft SUSY breaking parameters, eConf C 960625 (1996) SUP107 [hep-ph/9609457] [INSPIRE].
  42. [42]
    P. Nath and R.L. Arnowitt, Nonuniversal soft SUSY breaking and dark matter, Phys. Rev. D 56 (1997) 2820 [hep-ph/9701301] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Anderson, H. Baer, C.-h. Chen and X. Tata, The Reach of Fermilab Tevatron upgrades for SU(5) supergravity models with nonuniversal gaugino masses, Phys. Rev. D 61 (2000) 095005 [hep-ph/9903370] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Huitu, Y. Kawamura, T. Kobayashi and K. Puolamaki, Phenomenological constraints on SUSY SU(5) GUTs with nonuniversal gaugino masses, Phys. Rev. D 61 (2000) 035001 [hep-ph/9903528] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].ADSGoogle Scholar
  47. [47]
    U. Chattopadhyay and P. Nath, bτ unification, g μ -2, the \( \overrightarrow{b}s+\gamma \) constraint and nonuniversalities, Phys. Rev. D 65 (2002) 075009 [hep-ph/0110341] [INSPIRE].ADSGoogle Scholar
  48. [48]
    U. Chattopadhyay, A. Corsetti and P. Nath, Supersymmetric dark matter and Yukawa unification, Phys. Rev. D 66 (2002) 035003 [hep-ph/0201001] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].ADSGoogle Scholar
  51. [51]
    I. Gogoladze, F. Nasir and Q. Shafi, Non-Universal Gaugino Masses and Natural Supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1350046 [arXiv:1212.2593] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A Predictive Yukawa Unified SO(10) Model: Higgs and Sparticle Masses, JHEP 07 (2013) 139 [arXiv:1303.6964] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B. Kaufman and B.D. Nelson, Mirage Models Confront the LHC: II. Flux-Stabilized Type IIB String Theory, Phys. Rev. D 89 (2014) 085029 [arXiv:1312.6621] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Akula, SusyKit,
  55. [55]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-Precision Predictions for the Light CP-Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Bélanger, N.D. Christensen, A. Pukhov and A. Semenov, SLHAplus: a library for implementing extensions of the standard model, Comput. Phys. Commun. 182 (2011) 763 [arXiv:1008.0181] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    A. Fowlie and M. Raidal, Prospects for constrained supersymmetry at \( \sqrt{s}=33 \) TeV and \( \sqrt{s}=100 \) TeV proton-proton super-colliders, Eur. Phys. J. C 74 (2014) 2948 [arXiv:1402.5419] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Kim, P. Athron, C. Balázs, B. Farmer and E. Hutchison, Bayesian naturalness of the CMSSM and CNMSSM, Phys. Rev. D 90 (2014) 055008 [arXiv:1312.4150] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Fowlie, Is the CNMSSM more credible than the CMSSM?, Eur. Phys. J. C 74 (2014) 3105 [arXiv:1407.7534] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    L. Roszkowski, E.M. Sessolo and A.J. Williams, What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection, JHEP 08 (2014) 067 [arXiv:1405.4289] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P. Nath, SUSY2014: The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions, Manchester, U.K., July 20-26 2014.Google Scholar
  65. [65]
    A.H. Chamseddine, P. Nath and R.L. Arnowitt, Experimental Signals for Supersymmetric Decays of the W and Z Bosons, Phys. Lett. B 129 (1983) 445 [Erratum ibid. B 132 (1983) 467] [INSPIRE].
  66. [66]
    D.A. Dicus, S. Nandi and X. Tata, W Decay in Supergravity GUTs, Phys. Lett. B 129 (1983) 451 [Erratum ibid. B 145 (1984) 448] [INSPIRE].
  67. [67]
    H. Baer, K. Hagiwara and X. Tata, Gauginos as a Signal for Supersymmetry at \( p\overline{p} \) Colliders, Phys. Rev. D 35 (1987) 1598 [INSPIRE].ADSGoogle Scholar
  68. [68]
    P. Nath and R.L. Arnowitt, Supersymmetric Signals at the Tevatron, Mod. Phys. Lett. A 2 (1987) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].ADSGoogle Scholar
  70. [70]
    B. Altunkaynak, C. Kao and K. Yang, Unveiling the MSSM Neutral Higgs Bosons with Leptons and a Bottom Quark, arXiv:1312.3011 [INSPIRE].
  71. [71]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].ADSGoogle Scholar
  72. [72]
    U. Chattopadhyay, A. Corsetti and P. Nath, WMAP data and recent developments in supersymmetric dark matter, Phys. Atom. Nucl. 67 (2004) 1188 [hep-ph/0310228] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, bsγ and a μ in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, Supersymmetry and Implications for LHC and Dark Matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Liu and P. Nath, Higgs boson mass, proton decay, naturalness and constraints of the LHC and Planck data, Phys. Rev. D 87 (2013) 095012 [arXiv:1303.7472] [INSPIRE].ADSGoogle Scholar
  76. [76]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].ADSGoogle Scholar
  77. [77]
    B. Altunkaynak, M. Holmes, P. Nath, B.D. Nelson and G. Peim, SUSY Discovery Potential and Benchmarks for Early Runs at \( \sqrt{s}=7 \) TeV at the LHC, Phys. Rev. D 82 (2010) 115001 [arXiv:1008.3423] [INSPIRE].ADSGoogle Scholar
  78. [78]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].CrossRefGoogle Scholar
  80. [80]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  81. [81]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at \( \sqrt{s}=8 \) TeV proton-proton collisions with the ATLAS detector, JHEP 10 (2014) 024 [arXiv:1407.0600] [INSPIRE].Google Scholar
  82. [82]
    P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection, arXiv:1310.8327 [INSPIRE].
  83. [83]
    U. Chattopadhyay, T. Ibrahim and P. Nath, Effects of CP-violation on event rates in the direct detection of dark matter, Phys. Rev. D 60 (1999) 063505 [hep-ph/9811362] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • David Francescone
    • 1
  • Sujeet Akula
    • 2
    • 3
  • Baris Altunkaynak
    • 4
  • Pran Nath
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBostonU.S.A.
  2. 2.MTA-DE Particle Physics Research GroupUniversity of DebrecenDebrecenHungary
  3. 3.ARC Centre of Excellence for Particle Physics at the Terascale, School of PhysicsMonash UniversityMelbourneAustralia
  4. 4.Homer L. Dodge Department of Physics and AstronomyUniversity of OklahomaNormanU.S.A.

Personalised recommendations