Advertisement

Journal of High Energy Physics

, 2015:152 | Cite as

Flat space (higher spin) gravity with chemical potentials

  • Michael Gary
  • Daniel GrumillerEmail author
  • Max Riegler
  • Jan Rosseel
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.

Keywords

Higher Spin Gravity Field Theories in Lower Dimensions Higher Spin Symmetry AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2006).Google Scholar
  2. [2]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
  4. [4]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  5. [5]
    E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    M.A. Vasiliev, Holography, Unfolding and Higher-Spin Theory, J. Phys. A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  11. [11]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: the Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Giombi and X. Yin, On Higher Spin Gauge Theory and the Critical O(N) Model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.M. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    J.M. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  19. [19]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  21. [21]
    A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    G. Compère and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Compère, J.I. Jottar and W. Song, Observables and Microscopic Entropy of Higher Spin Black Holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    A. Perez, D. Tempo and R. Troncoso, Higher Spin Black Holes, Lect. Notes Phys. 892 (2015) 265 [arXiv:1402.1465] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    H. Afshar, A. Bagchi, S. Detournay, D. Grumiller, S. Prohazka et al., Holographic Chern-Simons Theories, Lect. Notes Phys. 892 (2015) 311 [arXiv:1404.1919] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    C. Krishnan, A. Raju, S. Roy and S. Thakur, Higher Spin Cosmology, Phys. Rev. D 89 (2014) 045007 [arXiv:1308.6741] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings, Class. Quant. Grav. 30 (2013) 104004 [arXiv:1211.4454] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Gutperle, E. Hijano and J. Samani, Lifshitz black holes in higher spin gravity, JHEP 04 (2014) 020 [arXiv:1310.0837] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    M. Gary, D. Grumiller, S. Prohazka and S.-J. Rey, Lifshitz Holography with Isotropic Scale Invariance, JHEP 08 (2014) 001 [arXiv:1406.1468] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 Gravity in Three-Dimensional Flat Space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    G. ’t Hooft, Dimensional reduction in quantum gravity, in Salamfestschrift, World Scientific (1993) [gr-qc/9310026] [INSPIRE].
  44. [44]
    L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    C. Aragone and S. Deser, Consistency Problems of Hypergravity, Phys. Lett. B 86 (1979) 161 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Grumiller, M. Riegler and J. Rosseel, Unitarity in three-dimensional flat space higher spin theories, JHEP 07 (2014) 015 [arXiv:1403.5297] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    G. Barnich and G. Compère, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].zbMATHCrossRefGoogle Scholar
  51. [51]
    H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105 (2010) 171601 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3d Flat Cosmological Horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    A. Bagchi, S. Detournay, D. Grumiller and J. Simón, Cosmic Evolution from Phase Transition of Three-Dimensional Flat Space, Phys. Rev. Lett. 111 (2013) 181301 [arXiv:1305.2919] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Bagchi and R. Fareghbal, BMS/GCA Redux: towards Flatspace Holography from Non-Relativistic Symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Bagchi, Tensionless Strings and Galilean Conformal Algebra, JHEP 05 (2013) 141 [arXiv:1303.0291] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    R.N. Caldeira Costa, Aspects of the zero Λ limit in the AdS/CFT correspondence, Phys. Rev. D 90 (2014) 104018 [arXiv:1311.7339] [INSPIRE].ADSGoogle Scholar
  64. [64]
    R. Fareghbal and A. Naseh, Flat-Space Energy-Momentum Tensor from BMS/GCA Correspondence, JHEP 03 (2014) 005 [arXiv:1312.2109] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C. Krishnan and S. Roy, Desingularization of the Milne Universe, Phys. Lett. B 734 (2014) 92 [arXiv:1311.7315] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    C. Krishnan, A. Raju and S. Roy, A Grassmann path from AdS 3 to flat space, JHEP 03 (2014) 036 [arXiv:1312.2941] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Bagchi and R. Basu, 3D Flat Holography: entropy and Logarithmic Corrections, JHEP 03 (2014) 020 [arXiv:1312.5748] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Detournay, D. Grumiller, F. Scholler and J. Simón, Variational principle and 1-point functions in 3-dimensional flat space Einstein gravity, Phys. Rev. D 89 (2014) 084061 [arXiv:1402.3687] [INSPIRE].ADSGoogle Scholar
  69. [69]
    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP 06 (2014) 129 [arXiv:1403.5803] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Asymptotic symmetries and dynamics of three-dimensional flat supergravity, JHEP 08 (2014) 071 [arXiv:1407.4275] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Riegler, Flat Space Limit of (Higher-Spin) Cardy Formula, arXiv:1408.6931 [INSPIRE].
  72. [72]
    R. Fareghbal and A. Naseh, Aspects of Flat/CCFT Correspondence, arXiv:1408.6932 [INSPIRE].
  73. [73]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  74. [74]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  75. [75]
    L. Cornalba and M.S. Costa, A New cosmological scenario in string theory, Phys. Rev. D 66 (2002) 066001 [hep-th/0203031] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys. 52 (2004) 145 [hep-th/0310099] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  77. [77]
    J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    B. Chen, J. Long and Y.-N. Wang, Phase Structure of Higher Spin Black Hole, JHEP 03 (2013) 017 [arXiv:1212.6593] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    M. Ferlaino, T. Hollowood and S.P. Kumar, Asymptotic symmetries and thermodynamics of higher spin black holes in AdS3, Phys. Rev. D 88 (2013) 066010 [arXiv:1305.2011] [INSPIRE].ADSGoogle Scholar
  80. [80]
    H. Afshar, Flat/AdS boundary conditions in three dimensional conformal gravity, JHEP 10 (2013) 027 [arXiv:1307.4855] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  81. [81]
    M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. Carlip, Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  83. [83]
    M. Henneaux and S.-J. Rey, Nonlinear W infinity as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  84. [84]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  85. [85]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: an Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  86. [86]
    F. Larsen, A String model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].ADSGoogle Scholar
  87. [87]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Curir, Remarks on a possible relation between gravitational instantons and the spin thermodynamics of a Kerr black hole, Lett. Nuovo Cim. 31 (1981) 517 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  89. [89]
    A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].ADSGoogle Scholar
  90. [90]
    S. Detournay, Inner Mechanics of 3d Black Holes, Phys. Rev. Lett. 109 (2012) 031101 [arXiv:1204.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    M. Bañados, R. Canto and S. Theisen, The Action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Natsuume, The Singularity problem in string theory, gr-qc/0108059 [INSPIRE].
  93. [93]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  94. [94]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].ADSMathSciNetGoogle Scholar
  95. [95]
    K.S. Kiran, C. Krishnan, A. Saurabh and J. Simón, Strings vs. Spins on the Null Orbifold, JHEP 12 (2014) 002 [arXiv:1408.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    G.T. Horowitz and A.R. Steif, Singular string solutions with nonsingular initial data, Phys. Lett. B 258 (1991) 91 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  97. [97]
    J.M. Figueroa-O’Farrill and J. Simón, Generalized supersymmetric fluxbranes, JHEP 12 (2001) 011 [hep-th/0110170] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    H. Liu, G.W. Moore and N. Seiberg, Strings in a time dependent orbifold, JHEP 06 (2002) 045 [hep-th/0204168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  99. [99]
    J. Simón, The Geometry of null rotation identifications, JHEP 06 (2002) 001 [hep-th/0203201] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  101. [101]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  102. [102]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  103. [103]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher Spin Black Holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  104. [104]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefGoogle Scholar
  105. [105]
    M. Beccaria and G. Macorini, Analysis of higher spin black holes with spin-4 chemical potential, JHEP 07 (2014) 047 [arXiv:1312.5599] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, arXiv:1410.4089 [INSPIRE].
  107. [107]
    M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  108. [108]
    J. de Boer and J.I. Jottar, Entanglement Entropy and Higher Spin Holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  109. [109]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev. D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Michael Gary
    • 1
  • Daniel Grumiller
    • 1
    Email author
  • Max Riegler
    • 1
    • 2
  • Jan Rosseel
    • 1
  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria
  2. 2.Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan

Personalised recommendations