Advertisement

Journal of High Energy Physics

, 2015:148 | Cite as

Generalized superconductors and holographic optics. Part II

  • Subhash MahapatraEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Using linear response theory, we analyze the electromagnetic response functions of generalized holographic superconductors, in AdS-Schwarzschild and single R-charged black hole backgrounds in four dimensions. By introducing momentum dependent vector mode perturbations, the response functions for these systems are studied numerically, including the effects of backreaction. This complements and completes the probe limit analysis for these backgrounds initiated in our previous work (arXiv:1305.6273). Our numerical analysis indicates a negative Depine-Lakhtakia index for both the backgrounds studied, at low enough frequencies. The dependence of the response functions on the backreaction parameter and the model parameters are established and analyzed with respect to similar backgrounds in five dimensions.

Keywords

Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  4. [4]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A General class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich et al., First order superconducting phase transition in CeCoIn(5), Phys. Rev. Lett. 89 (2002) 137002 [cond-mat/0203310] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.R. Smith, W.J. Padilla, J. Willie, D.C. Vier, S.C. Nemat-Nasser and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184.ADSCrossRefGoogle Scholar
  10. [10]
    J.B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85 (2000) 3966.ADSCrossRefGoogle Scholar
  11. [11]
    R.A. Depine and A. Lakhtakia, A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity, Micro. Opt. Tech. Lett. 41 (2004) 315.CrossRefGoogle Scholar
  12. [12]
    V.M. Agranovich and Y.N. Gartstein, Spatial dispersion and negative refraction of light, Phys.-Usp. 49 (2006) 1029.ADSCrossRefGoogle Scholar
  13. [13]
    D. Forcella, J. Zaanen, D. Valentinis and D. van der Marel, Electromagnetic properties of viscous charged fluids, Phys. Rev. B 90 (2014) 035143 [arXiv:1406.1356] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Amariti, D. Forcella, A. Mariotti and G. Policastro, Holographic Optics and Negative Refractive Index, JHEP 04 (2011) 036 [arXiv:1006.5714] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    X.-H. Ge, K. Jo and S.-J. Sin, Hydrodynamics of RN AdS 4 black hole and Holographic Optics, JHEP 03 (2011) 104 [arXiv:1012.2515] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    P. Phukon and T. Sarkar, R-Charged Black Holes and Holographic Optics, JHEP 09 (2013) 102 [arXiv:1305.2745] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon Plasmas at Finite Baryon Density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.M. Anlage, The physics and applications of superconducting metamaterials, Journal of Optics 13 (2011) 024001 [arXiv:1004.3226].ADSCrossRefGoogle Scholar
  19. [19]
    X. Gao and H.-b. Zhang, Refractive index in holographic superconductors, JHEP 08 (2010) 075 [arXiv:1008.0720] [INSPIRE].
  20. [20]
    A. Amariti, D. Forcella, A. Mariotti and M. Siani, Negative Refraction and Superconductivity, JHEP 10 (2011) 104 [arXiv:1107.1242] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Mahapatra, P. Phukon and T. Sarkar, Generalized Superconductors and Holographic Optics, JHEP 01 (2014) 135 [arXiv:1305.6273] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    A. Dey, S. Mahapatra and T. Sarkar, Generalized Holographic Superconductors with Higher Derivative Couplings, JHEP 06 (2014) 147 [arXiv:1404.2190] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Amariti, D. Forcella and A. Mariotti, Negative Refractive Index in Hydrodynamical Systems, JHEP 01 (2013) 105 [arXiv:1107.1240] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Forcella, A. Mezzalira and D. Musso, Electromagnetic response of strongly coupled plasmas, JHEP 11 (2014) 153 [arXiv:1404.4048] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.D. Landau and E.M. Lifshitz, Electrodynamics of continous media, Pergamon press, Oxford U.K. (1984).Google Scholar
  26. [26]
    M. Dressel and G. Gruner, Electrodynamics of solids, Cambridge University Press (2002).Google Scholar
  27. [27]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density Dependence of Transport Coefficients from Holographic Hydrodynamics, Prog. Theor. Phys. 120 (2008) 833 [arXiv:0806.4460] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    G.T. Horowitz and J.E. Santos, General Relativity and the Cuprates, JHEP 06 (2013) 087 [arXiv:1302.6586] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    M.W. McCall, A. Lakhtakia and W.S. Weiglhofer, The negative index of refraction demystified, Eur. J. Phys. 23 (2002) 353 [physics/0204067].CrossRefGoogle Scholar
  33. [33]
    M. Cvetič, M.J. Duff, P. Hoxha, J.T. Liu, H. Lü et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Dey, S. Mahapatra and T. Sarkar, Very General Holographic Superconductors and Entanglement Thermodynamics, JHEP 12 (2014) 135 [arXiv:1409.5309] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Flauger, E. Pajer and S. Papanikolaou, A Striped Holographic Superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].ADSGoogle Scholar
  36. [36]
    K. Maeda, M. Natsuume and T. Okamura, Dynamic critical phenomena in the AdS/CFT duality, Phys. Rev. D 78 (2008) 106007 [arXiv:0809.4074] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations