Advertisement

Journal of High Energy Physics

, 2015:144 | Cite as

Cosmological phase transitions and their properties in the NMSSM

  • Jonathan KozaczukEmail author
  • Stefano Profumo
  • Laurel Stephenson Haskins
  • Carroll L. Wainwright
Open Access
Regular Article - Theoretical Physics

Abstract

We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or SU(2) directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and Δβ (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We estimate the wall velocity microphysically, taking into account the various sources of friction acting on the expanding bubble wall. Ultra-relativistic solutions to the bubble wall equations of motion typically exist when the electroweak phase transition features substantial supercooling. For somewhat weaker transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic, suggesting that successful electroweak baryogenesis may indeed occur in regions of the NMSSM compatible with the Higgs discovery.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Supersymmetric Standard Model Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Canetti, M. Drewes and M. Shaposhnikov, Matter and antimatter in the universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.M. Cline, Baryogenesis, hep-ph/0609145 [INSPIRE].
  3. [3]
    M. Dine and A. Kusenko, The origin of the matter-antimatter asymmetry, Rev. Mod. Phys. 76 (2003) 1 [hep-ph/0303065] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D.J.H. Chung et al., The soft supersymmetry breaking Lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Menon and D.E. Morrissey, Higgs boson signatures of MSSM electroweak baryogenesis, Phys. Rev. D 79 (2009) 115020 [arXiv:0903.3038] [INSPIRE].ADSGoogle Scholar
  8. [8]
    K. Krizka, A. Kumar and D.E. Morrissey, Very light scalar top quarks at the LHC, Phys. Rev. D 87 (2013) 095016 [arXiv:1212.4856] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM baryogenesis and electric dipole moments: an update on the phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Kozaczuk, S. Profumo, M.J. Ramsey-Musolf and C.L. Wainwright, Supersymmetric electroweak baryogenesis via resonant sfermion sources, Phys. Rev. D 86 (2012) 096001 [arXiv:1206.4100] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Kozaczuk, S. Profumo and C.L. Wainwright, Accidental supersymmetric dark matter and baryogenesis, JCAP 01 (2013) 027 [arXiv:1208.5166] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    M. Pietroni, The electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B 402 (1993) 27 [hep-ph/9207227] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.T. Davies, C.D. Froggatt and R.G. Moorhouse, Electroweak baryogenesis in the next-to-minimal supersymmetric model, Phys. Lett. B 372 (1996) 88 [hep-ph/9603388] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.J. Huber and M.G. Schmidt, Electroweak baryogenesis: concrete in a SUSY model with a gauge singlet, Nucl. Phys. B 606 (2001) 183 [hep-ph/0003122] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Menon, D.E. Morrissey and C.E.M. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.W. Ham, S.K. Oh, C.M. Kim, E.J. Yoo and D. Son, Electroweak phase transition in a nonminimal supersymmetric model, Phys. Rev. D 70 (2004) 075001 [hep-ph/0406062] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Baryogenesis in the MSSM, NMSSM and NMSSM, Nucl. Phys. A 785 (2007) 206 [hep-ph/0608017] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.W. Ham, J.O. Im and S.K. Oh, Electroweak phase transition in the MNMSSM with explicit CP-violation, arXiv:0707.4543 [INSPIRE].
  21. [21]
    M. Carena, N.R. Shah and C.E.M. Wagner, Light dark matter and the electroweak phase transition in the NMSSM, Phys. Rev. D 85 (2012) 036003 [arXiv:1110.4378] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Kozaczuk, S. Profumo and C.L. Wainwright, Electroweak baryogenesis and the Fermi gamma-ray line, Phys. Rev. D 87 (2013) 075011 [arXiv:1302.4781] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Balázs, A. Mazumdar, E. Pukartas and G. White, Baryogenesis, dark matter and inflation in the next-to-minimal supersymmetric standard model, JHEP 01 (2014) 073 [arXiv:1309.5091] [INSPIRE].Google Scholar
  24. [24]
    K. Funakubo, S. Tao and F. Toyoda, Phase transitions in the NMSSM, Prog. Theor. Phys. 114 (2005) 369 [hep-ph/0501052] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.M. Cline and K. Kainulainen, A new source for electroweak baryogenesis in the MSSM, Phys. Rev. Lett. 85 (2000) 5519 [hep-ph/0002272] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Konstandin, T. Prokopec, M.G. Schmidt and M. Seco, MSSM electroweak baryogenesis and flavor mixing in transport equations, Nucl. Phys. B 738 (2006) 1 [hep-ph/0505103] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Kozaczuk and S. Profumo, Closing in on supersymmetric electroweak baryogenesis with dark matter searches and the Large Hadron Collider, JCAP 11 (2011) 031 [arXiv:1108.0393] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.M. Moreno, M. Quirós and M. Seco, Bubbles in the supersymmetric standard model, Nucl. Phys. B 526 (1998) 489 [hep-ph/9801272] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSGoogle Scholar
  31. [31]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSGoogle Scholar
  32. [32]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSzbMATHGoogle Scholar
  33. [33]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Wainwright, S. Profumo and M.J. Ramsey-Musolf, Gravity waves from a cosmological phase transition: gauge artifacts and daisy resummations, Phys. Rev. D 84 (2011) 023521 [arXiv:1104.5487] [INSPIRE].ADSGoogle Scholar
  36. [36]
    C.L. Wainwright, S. Profumo and M.J. Ramsey-Musolf, Phase transitions and gauge artifacts in an Abelian Higgs plus singlet model, Phys. Rev. D 86 (2012) 083537 [arXiv:1204.5464] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M.S. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M.S. Carena, J.R. Ellis, A. Pilaftsis and C.E.M. Wagner, Renormalization group improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The effective theory of the light stop scenario, JHEP 10 (2008) 062 [arXiv:0806.4297] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy SUSY, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Elliott, S.F. King and P.L. White, Supersymmetric Higgs bosons at the limit, Phys. Lett. B 305 (1993) 71 [hep-ph/9302202] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Elliott, S.F. King and P.L. White, Squark contributions to Higgs boson masses in the next-to-minimal supersymmetric standard model, Phys. Lett. B 314 (1993) 56 [hep-ph/9305282] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Elliott, S.F. King and P.L. White, Radiative corrections to Higgs boson masses in the next-to-minimal supersymmetric standard model, Phys. Rev. D 49 (1994) 2435 [hep-ph/9308309] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
  49. [49]
    K. Agashe, Y. Cui and R. Franceschini, Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM, JHEP 02 (2013) 031 [arXiv:1209.2115] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Natural NMSSM Higgs bosons, Nucl. Phys. B 870 (2013) 323 [arXiv:1211.5074] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].
  53. [53]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].Google Scholar
  54. [54]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSzbMATHGoogle Scholar
  55. [55]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSzbMATHGoogle Scholar
  57. [57]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSGoogle Scholar
  58. [58]
    P. Bechtle et al., Recent developments in HiggsBounds and a preview of HiggsSignals, PoS(CHARGED 2012)024 [arXiv:1301.2345] [INSPIRE].
  59. [59]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].ADSGoogle Scholar
  60. [60]
    E. Hardy, J. March-Russell and J. Unwin, Precision unification in λSUSY with a 125 GeV Higgs, JHEP 10 (2012) 072 [arXiv:1207.1435] [INSPIRE].ADSGoogle Scholar
  61. [61]
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].Google Scholar
  63. [63]
    L.D. Duffy and K. van Bibber, Axions as dark matter particles, New J. Phys. 11 (2009) 105008 [arXiv:0904.3346] [INSPIRE].ADSGoogle Scholar
  64. [64]
    F.D. Steffen, Gravitino dark matter and cosmological constraints, JCAP 09 (2006) 001 [hep-ph/0605306] [INSPIRE].ADSGoogle Scholar
  65. [65]
    Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [INSPIRE].ADSGoogle Scholar
  66. [66]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSGoogle Scholar
  67. [67]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSGoogle Scholar
  68. [68]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].ADSGoogle Scholar
  69. [69]
    U. Ellwanger, Testing the higgsino-singlino sector of the NMSSM with trileptons at the LHC, JHEP 11 (2013) 108 [arXiv:1309.1665] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J.S. Kim and T.S. Ray, The higgsino-singlino world, arXiv:1405.3700 [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
  72. [72]
    CMS collaboration, Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at 8 TeV, CMS-PAS-SUS-13-006 (2013).
  73. [73]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSGoogle Scholar
  74. [74]
    T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].ADSzbMATHGoogle Scholar
  75. [75]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3: a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].Google Scholar
  76. [76]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2014) 227 [arXiv:1312.2591] [INSPIRE].ADSGoogle Scholar
  77. [77]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  78. [78]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  79. [79]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20/fb of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  80. [80]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
  81. [81]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t}+{E}_T^{\mathrm{miss}} \) final state in 21 fb −1 of p-p collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
  82. [82]
    CMS collaboration, Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV, CMS-PAS-SUS-13-011 (2013).
  83. [83]
    U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and fine tuning in the NMSSM: implications of early LHC results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].ADSGoogle Scholar
  84. [84]
    D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking constraints in MSSM after the Higgs discovery at LHC, JHEP 02 (2014) 110 [arXiv:1310.1932] [INSPIRE].ADSGoogle Scholar
  85. [85]
    N. Blinov and D.E. Morrissey, Vacuum stability and the MSSM Higgs mass, JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].ADSGoogle Scholar
  86. [86]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-061 (2013).
  87. [87]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with a single lepton, large jet multiplicity and multiple b jets, CMS-SUS-13-007 (2013).
  88. [88]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  89. [89]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  90. [90]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  91. [91]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  92. [92]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  93. [93]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J. Kozaczuk and S. Profumo, Light NMSSM neutralino dark matter in the wake of CDMS II and a 126 GeV Higgs boson, Phys. Rev. D 89 (2014) 095012 [arXiv:1308.5705] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M.R. Buckley, V. Halyo and P. Lujan, Dont miss the displaced Higgs at the LHC again, arXiv:1405.2082 [INSPIRE].
  97. [97]
    S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].ADSGoogle Scholar
  98. [98]
    A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP 07 (2009) 086 [arXiv:0904.0353] [INSPIRE].ADSGoogle Scholar
  99. [99]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP 05 (2009) 009 [arXiv:0903.4099] [INSPIRE].Google Scholar
  100. [100]
    T. Konstandin and J.M. No, Hydrodynamic obstruction to bubble expansion, JCAP 02 (2011) 008 [arXiv:1011.3735] [INSPIRE].ADSGoogle Scholar
  101. [101]
    A. Mégevand, Friction forces on phase transition fronts, JCAP 07 (2013) 045 [arXiv:1303.4233] [INSPIRE].Google Scholar
  102. [102]
    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].ADSGoogle Scholar
  103. [103]
    V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  104. [104]
    P. Binetruy, A. Bohe, C. Caprini and J.-F. Dufaux, Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources, JCAP 06 (2012) 027 [arXiv:1201.0983] [INSPIRE].ADSGoogle Scholar
  105. [105]
    T. Kahniashvili, A. Kosowsky, G. Gogoberidze and Y. Maravin, Detectability of gravitational waves from phase transitions, Phys. Rev. D 78 (2008) 043003 [arXiv:0806.0293] [INSPIRE].ADSGoogle Scholar
  106. [106]
    C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].ADSGoogle Scholar
  107. [107]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].ADSGoogle Scholar
  108. [108]
    J.T. Giblin and J.B. Mertens, Gravitional radiation from first-order phase transitions in the presence of a fluid, Phys. Rev. D 90 (2014) 023532 [arXiv:1405.4005] [INSPIRE].ADSGoogle Scholar
  109. [109]
    G.D. Moore and T. Prokopec, How fast can the wall move? A study of the electroweak phase transition dynamics, Phys. Rev. D 52 (1995) 7182 [hep-ph/9506475] [INSPIRE].ADSGoogle Scholar
  110. [110]
    P. John and M.G. Schmidt, Do stops slow down electroweak bubble walls?, Nucl. Phys. B 598 (2001) 291 [Erratum ibid. B 648 (2003) 449] [hep-ph/0002050] [INSPIRE].
  111. [111]
    S.J. Huber and M. Sopena, An efficient approach to electroweak bubble velocities, arXiv:1302.1044 [INSPIRE].
  112. [112]
    S.J. Huber and M. Sopena, The bubble wall velocity in the minimal supersymmetric light stop scenario, Phys. Rev. D 85 (2012) 103507 [arXiv:1112.1888] [INSPIRE].ADSGoogle Scholar
  113. [113]
    A. Mégevand and A.D. Sanchez, Detonations and deflagrations in cosmological phase transitions, Nucl. Phys. B 820 (2009) 47 [arXiv:0904.1753] [INSPIRE].ADSGoogle Scholar
  114. [114]
    C. Wainwright and S. Profumo, The impact of a strongly first-order phase transition on the abundance of thermal relics, Phys. Rev. D 80 (2009) 103517 [arXiv:0909.1317] [INSPIRE].ADSGoogle Scholar
  115. [115]
    T. Konstandin, G. Nardini and I. Rues, From Boltzmann equations to steady wall velocities, JCAP 09 (2014) 028 [arXiv:1407.3132] [INSPIRE].ADSGoogle Scholar
  116. [116]
    A. Mégevand, First order cosmological phase transitions in the radiation dominated era, Phys. Rev. D 69 (2004) 103521 [hep-ph/0312305] [INSPIRE].ADSGoogle Scholar
  117. [117]
    G.D. Moore and N. Turok, Classical field dynamics of the electroweak phase transition, Phys. Rev. D 55 (1997) 6538 [hep-ph/9608350] [INSPIRE].ADSMathSciNetGoogle Scholar
  118. [118]
    G.D. Moore, Electroweak bubble wall friction: analytic results, JHEP 03 (2000) 006 [hep-ph/0001274] [INSPIRE].ADSGoogle Scholar
  119. [119]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].ADSGoogle Scholar
  120. [120]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].ADSGoogle Scholar
  121. [121]
    G.D. Moore, Transport coefficients in large N f gauge theory: testing hard thermal loops, JHEP 05 (2001) 039 [hep-ph/0104121] [INSPIRE].ADSGoogle Scholar
  122. [122]
    T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].ADSzbMATHGoogle Scholar
  123. [123]
    W. Huang, Z. Kang, J. Shu, P. Wu and J.M. Yang, New insights of electroweak phase transition in NMSSM, Phys. Rev. D 91 (2015) 025006 [arXiv:1405.1152] [INSPIRE].ADSGoogle Scholar
  124. [124]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jonathan Kozaczuk
    • 1
    Email author
  • Stefano Profumo
    • 2
    • 3
  • Laurel Stephenson Haskins
    • 2
    • 3
  • Carroll L. Wainwright
    • 2
    • 3
  1. 1.TRIUMFVancouverCanada
  2. 2.Department of PhysicsUniversity of CaliforniaSanta CruzU.S.A.
  3. 3.Santa Cruz Institute for Particle PhysicsSanta CruzU.S.A.

Personalised recommendations