Advertisement

Journal of High Energy Physics

, 2015:125 | Cite as

8D likelihood effective Higgs couplings extraction framework in h → 4

  • Yi Chen
  • Emanuele Di Marco
  • Joe Lykken
  • Maria Spiropulu
  • Roberto Vega-MoralesEmail author
  • Si Xie
Open Access
Regular Article - Experimental Physics

Abstract

We present an overview of a comprehensive analysis framework aimed at performing direct extraction of all possible effective Higgs couplings to neutral electroweak gauge bosons in the decay to electrons and muons, the so called ‘golden channel’. Our framework is based primarily on a maximum likelihood method constructed from analytic expressions of the fully differential cross sections for h → 4 and for the dominant irreducible \( q\overline{q} \) → 4 background, where 4 = 2e2μ, 4e, 4μ. Detector effects are included by an explicit convolution of these analytic expressions with the appropriate transfer function over all center of mass variables. Utilizing the full set of observables, we construct an unbinned detector-level likelihood which is continuous in the effective couplings. We consider possible ZZ, , and γγ couplings simultaneously, allowing for general CP odd/even admixtures. A broad overview is given of how the convolution is performed and we discuss the principles and theoretical basis of the framework. This framework can be used in a variety of ways to study Higgs couplings in the golden channel using data obtained at the LHC and other future colliders.

Keywords

Hadron-Hadron Scattering Higgs physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C.A. Nelson, Correlation between decay planes in Higgs boson decays into W pair (into Z pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W , or \( t\overline{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].ADSGoogle Scholar
  6. [6]
    V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Arens and L.M. Sehgal, Energy spectra and energy correlations in the decay HZZμ + μ μ + μ , Z. Phys. C 66 (1995) 89 [hep-ph/9409396] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZ 1+ 1 2+ 2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V.A. Kovalchuk, Model-independent analysis of CP-violation effects in decays of the Higgs boson into a pair of the W and Z bosons, J. Exp. Theor. Phys. 107 (2008) 774 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Q.-H. Cao, C.B. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs signal and background in the 2e2μ golden channel, JHEP 01 (2013) 182 [arXiv:1211.1959] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  21. [21]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Avery et al., Precision studies of the Higgs boson decay channel HZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].
  24. [24]
    J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    CMS collaboration, Search for a Higgs boson in the decay channel HZZ (*)\( q\overline{q}{\ell}^{-}{\ell}^{+} \) in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].ADSGoogle Scholar
  26. [26]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CMS collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Menon, T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125-126 GeV, Phys. Rev. D 89 (2014) 095021 [arXiv:1301.5404] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel hZZ * → 4, Int. J. Mod. Phys. A 29 (2014) 1450086 [arXiv:1309.4171] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Chen et al., The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC, Phys. Rev. D 89 (2014) 034002 [arXiv:1310.1397] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in hZℓ + , Eur. Phys. J. C 74 (2014) 2798 [arXiv:1310.2574] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Y. Chen and R. Vega-Morales, Extracting effective Higgs couplings in the golden channel, JHEP 04 (2014) 057 [arXiv:1310.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond geolocating: constraining higher dimensional operators in H → 4ℓ with off-shell production and more, arXiv:1403.4951 [INSPIRE].
  37. [37]
    Y. Chen, R. Harnik and R. Vega-Morales, Probing the Higgs couplings to photons in h → 4ℓ at the LHC, Phys. Rev. Lett. 113 (2014) 191801 [arXiv:1404.1336] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    CMS collaboration, Constraints on anomalous HVV interactions using H → 4ℓ decays, CMS-PAS-HIG-14-014, CERN, Geneva Switzerland (2014).
  39. [39]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, arXiv:1411.3441 [INSPIRE].
  40. [40]
    Y. Chen et al., Technical note for 8D likelihood effective Higgs couplings extraction framework in the golden channel, arXiv:1410.4817 [INSPIRE].
  41. [41]
    Y. Chen, Precision measurement of the 125 GeV Higgs boson discovered in proton-proton collisions at \( \sqrt{s} \) = 7, 8 TeV with the CMS detector at the LHC, thesis in preparation for Ph.D., California Institute of Technology, U.S.A.Google Scholar
  42. [42]
    R. Vega-Morales, The Higgs boson as a window to beyond the standard model, thesis in fulfillment of Ph.D. requirements, Northwestern University, U.S.A. (2013) [INSPIRE].
  43. [43]
    B. Bradie, A friendly introduction to numerical analysis: with C and MATLAB materials on website; int. ed., Prentice-Hall, Englewood Cliffs U.S.A. (2006).Google Scholar
  44. [44]
    P. Artoisenet and O. Mattelaer, MadWeight: automatic event reweighting with matrix elements, PoS(CHARGED2008)025 [INSPIRE].
  45. [45]
    P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling \( t\overline{t}h \) via the matrix element method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Falkowski and R. Vega-Morales, Exotic Higgs decays in the golden channel, JHEP 12 (2014) 037 [arXiv:1405.1095] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HWW/ZZ → 4, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays HZZ/WW → 4, Nucl. Phys. Proc. Suppl. 160 (2006) 131 [hep-ph/0607060] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    N.E. Adam et al., Higgs working group summary report, arXiv:0803.1154 [INSPIRE].
  51. [51]
    J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289.ADSCrossRefGoogle Scholar
  52. [52]
    CMS collaboration, CMS physics: technical design report volume 1: detector performance and software, CERN-LHCC-2006-001, CERN, Geneva Switzerland (2006).
  53. [53]
    CMS collaboration, CMS 2013 public electron performance results webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/EGMElectronsMoriond2013.
  54. [54]
    CMS collaboration, Electron performance with 19.6 fb−1 of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector, CMS-DP-2013-003, CERN, Geneva Switzerland (2013).
  55. [55]
    Y. Chen and R. Vega-Morales, Scrutinizing the golden channel webpage, http://yichen.me/project/GoldenChannel/.
  56. [56]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    F. James, MINUIT function minimization and error analysis: reference manual version 94.1, CERN, Geneva Switzerland (1994) [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Yi Chen
    • 1
  • Emanuele Di Marco
    • 2
  • Joe Lykken
    • 2
  • Maria Spiropulu
    • 1
  • Roberto Vega-Morales
    • 2
    • 3
    • 4
    Email author
  • Si Xie
    • 1
  1. 1.Lauritsen Laboratory of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Theoretical Physics Department, FermilabBataviaU.S.A.
  3. 3.Laboratoire de Physique Théorique d’Orsay, UMR8627-CNRSOrsay CedexFrance
  4. 4.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations