Advertisement

Journal of High Energy Physics

, 2015:121 | Cite as

Einstein-Yang-Mills scattering amplitudes from scattering equations

  • Freddy Cachazo
  • Song HeEmail author
  • Ellis Ye Yuan
Open Access
Regular Article - Theoretical Physics

Abstract

We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.

Keywords

Scattering Amplitudes Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Fairlie and D. Roberts, Dual Models without Tachyons — a New Approach, unpublished Durham preprint (1972).Google Scholar
  4. [4]
    D. Roberts, Mathematical Structure of Dual Amplitudes, Durham PhD thesis (1972).Google Scholar
  5. [5]
    D.B. Fairlie, A Coding of Real Null Four-Momenta into World-Sheet Co-ordinates, Adv. Math. Phys. 2009 (2009) 284689 [arXiv:0805.2263] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  6. [6]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIREJ+Nucl.Phys.,B303,407]].
  7. [7]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    P. Caputa and S. Hirano, Observations on Open and Closed String Scattering Amplitudes at High Energies, JHEP 02 (2012) 111 [arXiv:1108.2381] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Caputa, Lightlike contours with fermions, Phys. Lett. B 716 (2012) 475 [arXiv:1205.6369] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    Y. Makeenko and P. Olesen, The QCD scattering amplitude from area behaved Wilson loops, Phys. Lett. B 709 (2012) 285 [arXiv:1111.5606] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Cachazo, Fundamental BCJ Relation in N = 4 SYM From The Connected Formulation, arXiv:1206.5970 [INSPIRE].
  12. [12]
    L. Dolan and P. Goddard, The Polynomial Form of the Scattering Equations, JHEP 07 (2014) 029 [arXiv:1402.7374] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    H. Kawai, D. Lewellen and S. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Bandos, Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions, JHEP 09 (2014) 086 [arXiv:1404.1299] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    H. Gomez and E.Y. Yuan, N-point tree-level scattering amplitude in the new Berkovits‘ string, JHEP 04 (2014) 046 [arXiv:1312.5485] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    Y.-X. Chen, Y.-J. Du and B. Feng, On tree amplitudes with gluons coupled to gravitons, JHEP 01 (2011) 081 [arXiv:1011.1953] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    S. Stieberger and T.R. Taylor, Graviton as a Pair of Collinear Gauge Bosons, Phys. Lett. B 739 (2014) 457 [arXiv:1409.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y.-X. Chen, Y.-J. Du and Q. Ma, Relations Between Closed String Amplitudes at Higher-order Tree Level and Open String Amplitudes, Nucl. Phys. B 824 (2010) 314 [arXiv:0901.1163] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE].
  28. [28]
    Y.-X. Chen, Y.-J. Du and Q. Ma, Disk relations for tree amplitudes in minimal coupling theory of gauge field and gravity, Nucl. Phys. B 833 (2010) 28 [arXiv:1001.0060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The Momentum Kernel of Gauge and Gravity Theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    F. Cachazo and Y. Geyer, A ’Twistor String’ Inspired Formula For Tree-Level Scattering Amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  32. [32]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, arXiv:1408.0764 [INSPIRE].
  34. [34]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Tourkine and P. Vanhove, Scattering Equations and String Theory Amplitudes, Phys. Rev. D 90 (2014) 106002 [arXiv:1403.4553] [INSPIRE].ADSGoogle Scholar
  35. [35]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ Numerators from Pure Spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Department of Physics & AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations