Journal of High Energy Physics

, 2015:117 | Cite as

Black ringoids: spinning balanced black objects in d ≥ 5 dimensions — the codimension-two case

Open Access
Regular Article - Theoretical Physics

Abstract

We propose a general framework for the study of asymptotically flat black objects with k + 1 equal magnitude angular momenta in d ≥ 5 spacetime dimensions (with \( 0\le k\le \left[\frac{d-5}{2}\right] \)). In this approach, the dependence on all angular coordinates but one is factorized, which leads to a codimension-two problem. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of Myers-Perry black holes. A different set of solutions describes balanced black objects with Sn+1 × S2k+1 horizon topology. The simplest members of this family are the black rings (k = 0). The solutions with k > 0 are dubbed black ringoids. Based on the nonperturbative numerical results found for several values of (n, k), we propose a general picture for the properties and the phase diagram of these solutions and the associated black holes with spherical horizon topology: n = 1 black ringoids repeat the k = 0 pattern of black rings and Myers-Perry black holes in 5 dimensions, whereas n > 1 black ringoids follow the pattern of higher dimensional black rings associated with ‘pinched’ black holes and Myers-Perry black holes.

Keywords

Classical Theories of Gravity Black Holes 

References

  1. [1]
    S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973) [INSPIRE].CrossRefMATHGoogle Scholar
  2. [2]
    F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Emparan and H.S. Reall, Generalized Weyl solutions, Phys. Rev. D 65 (2002) 084025 [hep-th/0110258] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].Google Scholar
  7. [7]
    K. Maeda, T. Shiromizu and T. Tanaka eds., Higher dimensional black holes, Progr. Theor. Phys. Suppl. 189 (2011) 1 [INSPIRE].
  8. [8]
    G.T. Horowitz ed., Black holes in higher dimensions, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].MATHGoogle Scholar
  9. [9]
    H.S. Reall, Higher dimensional black holes, Int. J. Mod. Phys. D 21 (2012) 1230001 [arXiv:1210.1402] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    B. Carter, Classical dynamics of strings and branes, with application to vortons, arXiv:1112.2094 [INSPIRE].
  15. [15]
    H. Kudoh, Doubly spinning black rings, Phys. Rev. D 75 (2007) 064006 [gr-qc/0611136] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    B. Kleihaus, J. Kunz and E. Radu, d ≥ 5 static black holes with S 2 × S d−4 event horizon topology, Phys. Lett. B 678 (2009) 301 [arXiv:0904.2723] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. Kleihaus, J. Kunz, E. Radu and M.J. Rodriguez, New generalized nonspherical black hole solutions, JHEP 02 (2011) 058 [arXiv:1010.2898] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    B. Kleihaus, J. Kunz and E. Radu, Black rings in six dimensions, Phys. Lett. B 718 (2013) 1073 [arXiv:1205.5437] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Kleihaus, J. Kunz and E. Radu, d ≥ 5 magnetized static, balanced black holes with S 2 × S d−4 event horizon topology, Phys. Lett. B 723 (2013) 182 [arXiv:1303.2190] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    Ó. J.C. Dias, J.E. Santos and B. Way, Rings, ripples and rotation: connecting black holes to black rings, JHEP 07 (2014) 045 [arXiv:1402.6345] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [INSPIRE].ADSGoogle Scholar
  22. [22]
    O.J.C. Dias, P. Figueras, R. Monteiro and J.E. Santos, Ultraspinning instability of rotating black holes, Phys. Rev. D 82 (2010) 104025 [arXiv:1006.1904] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Kudoh and T. Wiseman, Properties of Kaluza-Klein black holes, Prog. Theor. Phys. 111 (2004) 475 [hep-th/0310104] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    T. Harmark and N.A. Obers, Black holes on cylinders, JHEP 05 (2002) 032 [hep-th/0204047] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    R. Emparan and H.S. Reall, Black rings, Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    B. Kleihaus, J. Kunz and E. Radu, Generalized Weyl solutions in D = 5 Einstein-Gauss-Bonnet theory: the static black ring, JHEP 02 (2010) 092 [arXiv:0912.1725] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    S. Stotyn, C.D. Leonard, M. Oltean, L.J. Henderson and R.B. Mann, Numerical boson stars with a single Killing vector I. The D ≥ 5 case, Phys. Rev. D 89 (2014) 044017 [arXiv:1307.8159] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Kunz, F. Navarro-Lerida and J. Viebahn, Charged rotating black holes in odd dimensions, Phys. Lett. B 639 (2006) 362 [hep-th/0605075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    J. Kunz and F. Navarro-Lerida, Negative horizon mass for rotating black holes, Phys. Lett. B 643 (2006) 55 [hep-th/0610036] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    Y. Brihaye, B. Kleihaus, J. Kunz and E. Radu, Rotating black holes with equal-magnitude angular momenta in D = 5 Einstein-Gauss-Bonnet theory, JHEP 11 (2010) 098 [arXiv:1010.0860] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    M. Allahverdizadeh, J. Kunz and F. Navarro-Lerida, Extremal charged rotating black holes in odd dimensions, Phys. Rev. D 82 (2010) 024030 [arXiv:1004.5050] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M. Allahverdizadeh, J. Kunz and F. Navarro-Lerida, Extremal charged rotating dilaton black holes in odd dimensions, Phys. Rev. D 82 (2010) 064034 [arXiv:1007.4250] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    W. Schönauer and R. Weiß, Efficient vectorizable PDE solvers, J. Comput. Appl. Math. 27 (1989) 279.CrossRefMATHGoogle Scholar
  34. [34]
    M. Schauder, R. Weiß and W. Schönauer, The CADSOL program package, Interner Bericht Nr. 46/92, Universität Karlsruhe, Karlsruhe Germany (1992).Google Scholar
  35. [35]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP 12 (2006) 074 [hep-th/0608076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    C. Herdeiro, B. Kleihaus, J. Kunz and E. Radu, On the Bekenstein-Hawking area law for black objects with conical singularities, Phys. Rev. D 81 (2010) 064013 [arXiv:0912.3386] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    C. Herdeiro, E. Radu and C. Rebelo, Thermodynamical description of stationary, asymptotically flat solutions with conical singularities, Phys. Rev. D 81 (2010) 104031 [arXiv:1004.3959] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Armas and T. Harmark, Black holes and biophysical (mem)-branes, Phys. Rev. D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Kleihaus, J. Kunz and K. Schnulle, Charged balanced black rings in five dimensions, Phys. Lett. B 699 (2011) 192 [arXiv:1012.5044] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    J. Armas and N.A. Obers, Blackfolds in (anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].ADSGoogle Scholar
  44. [44]
    R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP 11 (2010) 022 [arXiv:1008.3243] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    A.A. Pomeransky and R.A. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [INSPIRE].
  46. [46]
    O.J.C. Dias, G.T. Horowitz and J.E. Santos, Black holes with only one Killing field, JHEP 07 (2011) 115 [arXiv:1105.4167] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institut für PhysikUniversität OldenburgOldenburgGermany
  2. 2.Departamento de Física da Universidade de Aveiro and I3NAveiroPortugal

Personalised recommendations