Advertisement

Journal of High Energy Physics

, 2015:102 | Cite as

Quantum entanglement of localized excited states at finite temperature

  • Pawel CaputaEmail author
  • Joan Simón
  • Andrius Štikonas
  • Tadashi Takayanagi
Open Access
Regular Article - Theoretical Physics

Abstract

In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

Keywords

AdS-CFT Correspondence Black Holes Conformal Field Models in String Theory Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].Google Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  7. [7]
    T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular momentum and U(1) charge, JHEP 11 (2013) 052 [arXiv:1306.4974] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, arXiv:1409.8180 [INSPIRE].
  17. [17]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality and holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Nozaki, T. Numasawa and T. Takayanagi, Quantum Entanglement of Local Operators in Conformal Field Theories, Phys. Rev. Lett. 112 (2014) 111602 [arXiv:1401.0539] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in Conformal Field Theory, Phys. Rev. Lett. 106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Nozaki, Notes on Quantum Entanglement of Local Operators, JHEP 10 (2014) 147 [arXiv:1405.5875] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Shiba, Entanglement Entropy of Disjoint Regions in Excited States: An Operator Method, JHEP 12 (2014) 152 [arXiv:1408.0637] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Pálmai, Excited state entanglement in one dimensional quantum critical systems: Extensivity and the role of microscopic details, Phys. Rev. B 90 (2014) 161404 [arXiv:1406.3182] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in two dimensional conformal field theories, Phys. Rev. D 90 (2014) 041701 [arXiv:1403.0702] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N conformal field theories, PTEP 2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE].Google Scholar
  25. [25]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    M.M. Roberts, Time evolution of entanglement entropy from a pulse, JHEP 12 (2012) 027 [arXiv:1204.1982] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.F. Astaneh and A.E. Mosaffa, Holographic Entanglement Entropy for Excited States in Two Dimensional CFT, JHEP JHEP03 (2013) 135 [arXiv:1301.1495] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562 [INSPIRE].
  29. [29]
    C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A.F. Astaneh and A.E. Mosaffa, Quantum Local Quench, AdS/BCFT and Yo-Yo String, arXiv:1405.5469 [INSPIRE].
  31. [31]
    S. Giusto and R. Russo, Entanglement Entropy and D1-D5 geometries, Phys. Rev. D 90 (2014) 066004 [arXiv:1405.6185] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Calabrese and J. L. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech. (2007) P10004 [arXiv:0708.3750].
  33. [33]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, arXiv:1410.1392 [INSPIRE].
  34. [34]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Susskind, Addendum to Fast Scramblers, arXiv:1101.6048 [INSPIRE].
  40. [40]
    P. Di Francesco, H. Saleur and J.B. Zuber, Critical Ising Correlation Functions in the Plane and on the Torus, Nucl. Phys. B 290 (1987) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  42. [42]
    V. Fateev and S. Ribault, The large central charge limit of conformal blocks, JHEP 02 (2012) 001 [arXiv:1109.6764] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  44. [44]
    G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, JHEP 07 (2013) 081 [arXiv:1211.2887] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Pawel Caputa
    • 1
    • 2
    Email author
  • Joan Simón
    • 3
  • Andrius Štikonas
    • 3
  • Tadashi Takayanagi
    • 1
    • 4
  1. 1.Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.School of Mathematics and Maxwell Institute for Mathematical SciencesUniversity of EdinburghEdinburghU.K.
  4. 4.Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)University of TokyoKashiwaJapan

Personalised recommendations