Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop

Open Access
Regular Article - Theoretical Physics

Abstract

The results of phenomenological studies of top-quark pair production in proton-proton collisions are presented. Differential cross sections are calculated in perturbative QCD at approximate next-to-next-to-leading order \( \mathcal{O}\left({\alpha}_s^4\right) \) by using methods of threshold resummation beyond the leading logarithmic accuracy. Predictions for the single-particle inclusive kinematics are presented for transverse momentum and rapidity distributions of final-state top quarks. Uncertainties related to the description of proton structure, top-quark mass and strong coupling constant are investigated in detail. The results are compared to the recent measurements by the ATLAS and CMS collaborations at the LHC at the center of mass energy of 7 TeV. The calculation presented here is implemented in the computer code Difftop and can be applied to the general case of heavy-quark pair production at hadron-hadron colliders. For the first time, a fit of parton distribution functions at NNLO is performed by using the differential cross sections of top-quark pair production together with other data sets. The impact of the top-pair production on the precision of the gluon distribution at high scales is illustrated.

Keywords

QCD Phenomenology Hadronic Colliders 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS, CDF, CMS, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  6. [6]
    S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [INSPIRE].
  7. [7]
    S. Alioli et al., A new observable to measure the top-quark mass at hadron colliders, Eur. Phys. J. C 73 (2013) 2438 [arXiv:1303.6415] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Biswas, K. Melnikov and M. Schulze, Next-to-leading order QCD effects and the top quark mass measurements at the LHC, JHEP 08 (2010) 048 [arXiv:1006.0910] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, Determination of the top-quark pole mass and strong coupling constant from the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 728 (2014) 496 [Erratum ibid. B 728 (2014) 526-528] [arXiv:1307.1907] [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 02 (2014) 024 [Erratum ibid. 1402 (2014) 102] [arXiv:1312.7582] [INSPIRE].
  12. [12]
    ATLAS collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2261 [arXiv:1207.5644] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, Measurements of normalized differential cross-sections for \( t\overline{t} \) production in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, CERN-PH-EP-2014-099 (2014).
  14. [14]
    ATLAS collaboration, Measurement of top-quark pair differential cross-sections in the l + jets channel in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-099 (2013) [ATLAS-COM-CONF-2013-114].
  15. [15]
    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s} \) = 8 TeV using eμ events with b-tagged jets, ATLAS-CONF-2013-097 (2013) [ATLAS-COM-CONF-2013-112].
  16. [16]
    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].
  18. [18]
    W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in \( p\overline{p} \) collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Meng, G.A. Schuler, J. Smith and W.L. van Neerven, Simple formulae for the order α s 3 QCD corrections to the reaction \( p\overline{p}\ \to\ Q\overline{Q}X \), Nucl. Phys. B 339 (1990) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Czakon, A. Mitov and S. Moch, Heavy-quark production in gluon fusion at two loops in QCD, Nucl. Phys. B 798 (2008) 210 [arXiv:0707.4139] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Czakon, A. Mitov and S. Moch, Heavy-quark production in massless quark scattering at two loops in QCD, Phys. Lett. B 651 (2007) 147 [arXiv:0705.1975] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP 05 (2007) 001 [hep-ph/0612149] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys. B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections, JHEP 02 (2014) 078 [arXiv:1312.6279] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  36. [36]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10 (2012) 110 [arXiv:1207.5018] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.M. Campbell and R.K. Ellis, Radiative corrections to \( Zb\overline{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Guzzi, K. Lipka and S.-O. Moch, The DiffTop documentation webpage, https://difftop.hepforge.org/.
  45. [45]
    M. Beneke et al., Inclusive top-pair production phenomenology with TOPIXS, JHEP 07 (2012) 194 [arXiv:1206.2454] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Britzger et al., Generalization of the fastNLO approach to NNLO calculations, talk given at the XXII International Workshop on Deep-Inelastic Scattering and Related Subjects, April 28-May 2, Warsaw, Poland (2014).
  48. [48]
    fastNLO collaboration, D. Britzger et al., New features in version 2 of the fastNLO project, arXiv:1208.3641 [INSPIRE].
  49. [49]
    fastNLO collaboration, M. Wobisch et al., Theory-data comparisons for jet measurements in hadron-induced processes, arXiv:1109.1310 [INSPIRE].
  50. [50]
    T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: fast pQCD calculations for PDF fits, hep-ph/0609285 [INSPIRE].
  51. [51]
    HERAFitter web site, http://www.herafitter.org.
  52. [52]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys. B 353 (1991) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [INSPIRE].
  57. [57]
    E. Laenen, G. Oderda and G.F. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett. B 438 (1998) 173 [hep-ph/9806467] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].
  59. [59]
    N. Kidonakis, NNNLO soft-gluon corrections for the top-antitop pair production cross section, Phys. Rev. D 90 (2014) 014006 [arXiv:1405.7046] [INSPIRE].ADSGoogle Scholar
  60. [60]
    N. Kidonakis, High order corrections and subleading logarithms for top quark production, Phys. Rev. D 64 (2001) 014009 [hep-ph/0010002] [INSPIRE].ADSGoogle Scholar
  61. [61]
    N. Kidonakis, E. Laenen, S. Moch and R. Vogt, Sudakov resummation and finite order expansions of heavy quark hadroproduction cross-sections, Phys. Rev. D 64 (2001) 114001 [hep-ph/0105041] [INSPIRE].ADSGoogle Scholar
  62. [62]
    N. Kidonakis, A Unified approach to NNLO soft and virtual corrections in electroweak, Higgs, QCD and SUSY processes, Int. J. Mod. Phys. A 19 (2004) 1793 [hep-ph/0303186] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N. Kidonakis and R. Vogt, Next-to-next-to-leading order soft gluon corrections in top quark hadroproduction, Phys. Rev. D 68 (2003) 114014 [hep-ph/0308222] [INSPIRE].ADSGoogle Scholar
  64. [64]
    N. Kidonakis, Next-to-next-to-next-to-leading-order soft-gluon corrections in hard-scattering processes near threshold, Phys. Rev. D 73 (2006) 034001 [hep-ph/0509079] [INSPIRE].ADSGoogle Scholar
  65. [65]
    N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [INSPIRE].ADSGoogle Scholar
  66. [66]
    N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028 [arXiv:1001.5034] [INSPIRE].ADSGoogle Scholar
  67. [67]
    N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Czakon, A. Mitov and G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Threshold expansion at order α s4 for the \( t\overline{t} \) invariant mass distribution at hadron colliders, Phys. Lett. B 687 (2010) 331 [arXiv:0912.3375] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.-L. Yang, RG-improved single-particle inclusive cross sections and forward-backward asymmetry in \( t\overline{t} \) production at hadron colliders, JHEP 09 (2011) 070 [arXiv:1103.0550] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    V. Ahrens et al., Precision predictions for the \( t + \overline{t} \) production cross section at hadron colliders, Phys. Lett. B 703 (2011) 135 [arXiv:1105.5824] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Ferroglia et al., The NNLO soft function for the pair invariant mass distribution of boosted top quarks, JHEP 10 (2012) 180 [arXiv:1207.4798] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Ferroglia, B.D. Pecjak and L.L. Yang, Soft-gluon resummation for boosted top-quark production at hadron colliders, Phys. Rev. D 86 (2012) 034010 [arXiv:1205.3662] [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Ferroglia, S. Marzani, B.D. Pecjak and L.L. Yang, Boosted top production: factorization and resummation for single-particle inclusive distributions, JHEP 01 (2014) 028 [arXiv:1310.3836] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    N. Kidonakis and B.D. Pecjak, Top-quark production and QCD, Eur. Phys. J. C 72 (2012) 2084 [arXiv:1108.6063] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    N. Kidonakis and G.F. Sterman, Subleading logarithms in QCD hard scattering, Phys. Lett. B 387 (1996) 867 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    N. Kidonakis, Top quark production, arXiv:1311.0283 [INSPIRE].
  83. [83]
    T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].
  84. [84]
    N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Mitov, G.F. Sterman and I. Sung, The massive soft anomalous dimension matrix at two loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [INSPIRE].ADSGoogle Scholar
  86. [86]
    A. Mitov, G.F. Sterman and I. Sung, Computation of the soft anomalous dimension matrix in coordinate space, Phys. Rev. D 82 (2010) 034020 [arXiv:1005.4646] [INSPIRE].ADSGoogle Scholar
  87. [87]
    M. Czakon and P. Fiedler, The soft function for color octet production at threshold, Nucl. Phys. B 879 (2014) 236 [arXiv:1311.2541] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  91. [91]
    S. Alekhin, J. Blümlein and S. Moch, Parton distribution functions and benchmark cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].ADSGoogle Scholar
  92. [92]
    ZEUS, H1 collaboration, A.M. Cooper-Sarkar, PDF fits at HERA, PoS(EPS-HEP2011)320 [arXiv:1112.2107] [INSPIRE].
  93. [93]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  95. [95]
    M. Guzzi, K. Lipka and S.-O. Moch, Top-quark production at the LHC: differential cross section and phenomenological applications, PoS(DIS 2013)049 [arXiv:1308.1635] [INSPIRE].
  96. [96]
    S. Alekhin, J. Blümlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].ADSGoogle Scholar
  97. [97]
    M. Dowling and S.-O. Moch, Differential distributions for top-quark hadro-production with a running mass, Eur. Phys. J. C 74 (2014) 3167 [arXiv:1305.6422] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Botje, QCDNUM: fast QCD evolution and convolution, Comput. Phys. Commun. 182 (2011) 490 [arXiv:1005.1481] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  99. [99]
    ATLAS collaboration, Statistical combination of top quark pair production cross-section measurements using dilepton, single-lepton and all-hadronic final states at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2012-024 (2012).
  100. [100]
    ATLAS collaboration, Measurement of the top quark pair production cross section in the single-lepton channel with ATLAS in proton-proton collisions at 8 TeV using kinematic fits with b-tagging, ATLAS-CONF-2012-149 (2012).
  101. [101]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 11 (2012) 067 [arXiv:1208.2671] [INSPIRE].ADSGoogle Scholar
  102. [102]
    CMS collaboration, Top pair cross section in dileptons, CMS-PAS-TOP-12-007 (2012).
  103. [103]
    CDF collaboration, Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF Conference Note 9913 (2009).Google Scholar
  104. [104]
    H1, ZEUS collaboration, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].
  105. [105]
    CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2011) 080 [arXiv:1012.2466] [INSPIRE].Google Scholar
  106. [106]
    CMS collaboration, Measurement of the muon charge asymmetry in inclusive ppW + X production at \( \sqrt{s} \) = 7 TeV and an improved determination of light parton distribution functions, Phys. Rev. D 90 (2014) 032004 [arXiv:1312.6283] [INSPIRE].ADSGoogle Scholar
  107. [107]
    R.S. Thorne, A variable-flavor number scheme for NNLO, Phys. Rev. D 73 (2006) 054019 [hep-ph/0601245] [INSPIRE].ADSGoogle Scholar
  108. [108]
    M. Czakon and A.D. Mitov, Top pair production, talk given at the Topical workshop on top quark differential distributions (TOP2014), September 26-28, Cannes, France (2014).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  3. 3.Deutsches Elektronen-Synchrotron DESYZeuthenGermany

Personalised recommendations