Advertisement

Higgs production and decay in models of a warped extra dimension with a bulk Higgs

  • Paul R. Archer
  • Marcela Carena
  • Adrian CarmonaEmail author
  • Matthias Neubert
Open Access
Regular Article - Theoretical Physics

Abstract

Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H →γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. We perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y , the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing electroweak precision observables in 5D warped models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Improving naturalness in warped models with a heavy bulk Higgs boson, Phys. Rev. D 84 (2011) 035024 [arXiv:1104.3149] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Carmona, E. Ponton and J. Santiago, Phenomenology of non-custodial warped models, JHEP 10 (2011) 137 [arXiv:1107.1500] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].ADSGoogle Scholar
  9. [9]
    P.R. Archer, S.J. Huber and S. Jager, Flavour physics in the soft wall model, JHEP 12 (2011) 101 [arXiv:1108.1433] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Flavor phenomenology in general 5D warped spaces, JHEP 01 (2012) 033 [arXiv:1110.3324] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P.R. Archer, The fermion mass hierarchy in models with warped extra dimensions and a bulk Higgs, JHEP 09 (2012) 095 [arXiv:1204.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. von Gersdorff, M. Quirós and M. Wiechers, Neutrino mixing from Wilson lines in warped space, JHEP 02 (2013) 079 [arXiv:1208.4300] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    K. Agashe, A. Falkowski, I. Low and G. Servant, KK parity in warped extra dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A.D. Medina and E. Ponton, Warped universal extra dimensions, JHEP 06 (2011) 009 [arXiv:1012.5298] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  18. [18]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: quark and lepton masses without a Higgs, Phys. Rev. D 70 (2004) 015012 [hep-ph/0310355] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNCs in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Goertz, U. Haisch and M. Neubert, Bounds on warped extra dimensions from a standard model-like Higgs boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Frank, N. Pourtolami and M. Toharia, Higgs bosons in warped space, from the bulk to the brane, Phys. Rev. D 87 (2013) 096003 [arXiv:1301.7692] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Malm, M. Neubert, K. Novotny and C. Schmell, 5D perspective on Higgs production at the boundary of a warped extra dimension, JHEP 01 (2014) 173 [arXiv:1303.5702] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.S. Carena, E. Ponton, T.M.P. Tait and C.E. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Precision electroweak data and unification of couplings in warped extra dimensions, Phys. Rev. D 68 (2003) 035010 [hep-ph/0305188] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Carmona and J. Santiago, The effective lagrangian for bulk fermions in models with extra dimensions, JHEP 01 (2012) 100 [arXiv:1110.5651] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Csáki, J. Erlich and J. Terning, The effective lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [INSPIRE].ADSGoogle Scholar
  33. [33]
    H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Dominici, B. Grzadkowski, J.F. Gunion and M. Toharia, The scalar sector of the Randall-Sundrum model, Nucl. Phys. B 671 (2003) 243 [hep-ph/0206192] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    J.F. Gunion, M. Toharia and J.D. Wells, Precision electroweak data and the mixed Radion-Higgs sector of warped extra dimensions, Phys. Lett. B 585 (2004) 295 [hep-ph/0311219] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T.G. Rizzo, Radion couplings to bulk fields in the Randall-Sundrum model, JHEP 06 (2002) 056 [hep-ph/0205242] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    P. Cox, A.D. Medina, T.S. Ray and A. Spray, Radion/dilaton-Higgs mixing phenomenology in light of the LHC, JHEP 02 (2014) 032 [arXiv:1311.3663] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguin diagrams, Phys. Rev. D 83 (2011) 073002 [arXiv:1004.2037] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Blanke, B. Shakya, P. Tanedo and Y. Tsai, The birds and the Bs in RS: the bsγ penguin in a warped extra dimension, JHEP 08 (2012) 038 [arXiv:1203.6650] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Beneke, P. Dey and J. Rohrwild, The muon anomalous magnetic moment in the Randall-Sundrum model, JHEP 08 (2013) 010 [arXiv:1209.5897] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Hahn et al., Higgs decay into two photons at the boundary of a warped extra dimension, Eur. Phys. J. C 74 (2014) 2857 [arXiv:1312.5731] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Bohm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction, Vieweg and Teubner Verlag, Germany (2001).CrossRefGoogle Scholar
  48. [48]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Malm, M. Neubert and C. Schmell, Higgs couplings and phenomenology in a warped extra dimension, arXiv:1408.4456 [INSPIRE].
  51. [51]
    W.-Y. Keung and W.J. Marciano, Higgs scalar decays: HW ± X, Phys. Rev. D 30 (1984) 248 [INSPIRE].ADSGoogle Scholar
  52. [52]
    J.F. Gunion, H.E. Haber, G.L. Kane, and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  53. [53]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Carena, I. Low and C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Hirn and V. Sanz, (Not) summing over Kaluza-Kleins, Phys. Rev. D 76 (2007) 044022 [hep-ph/0702005] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  60. [60]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  61. [61]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Delgado and A. Falkowski, Electroweak observables in a general 5D background, JHEP 05 (2007) 097 [hep-ph/0702234] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Fichet and G. von Gersdorff, Anomalous gauge couplings from composite Higgs and warped extra dimensions, JHEP 03 (2014) 102 [arXiv:1311.6815] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard model Higgs-boson branching ratios with uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Paul R. Archer
    • 1
  • Marcela Carena
    • 2
    • 3
  • Adrian Carmona
    • 4
    Email author
  • Matthias Neubert
    • 1
    • 5
  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  3. 3.Enrico Fermi Institute and KICPUniversity of ChicagoChicagoU.S.A.
  4. 4.Institut für Theoretische PhysikETH ZürichZürichSwitzerland
  5. 5.Department of Physics, LEPPCornell UniversityIthacaU.S.A.

Personalised recommendations