Advertisement

Quantum corrections in string compactifications on SU(3) structure geometries

  • Mariana Graña
  • Jan LouisEmail author
  • Ulrich Theis
  • Daniel Waldram
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate quantum corrections to the classical four-dimensional low-energy effective action of type II string theory compactified on SU(3) structure geometries. Various methods previously developed for Calabi-Yau compactifications are adopted to constrain - under some simple assumptions about the low-energy degrees of freedom - the leading perturbative corrections to the moduli space metrics in both α′ and the string coupling constant. We find that they can be parametrized by a moduli dependent function in the hypermultiplet sector and a constant in the vector multiplet sector. We argue that under specific additional assumption they take - in complete analogy to the Calabi-Yau case - a universal form which depends only on the Euler characteristic of the six-dimensional compact space.

Keywords

Supersymmetric Effective Theories Flux compactifications Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.P. Gauntlett, N. Kim, D. Martelli and D. Waldram, Five-branes wrapped on SLAG three cycles and related geometry, JHEP 11 (2001) 018 [hep-th/0110034] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Gurrieri and A. Micu, Type IIB theory on half flat manifolds, Class. Quant. Grav. 20 (2003) 2181 [hep-th/0212278] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    N.J. Hitchin, The geometry of three-forms in six and seven dimensions, math/0010054 [INSPIRE].
  7. [7]
    N.J. Hitchin, Stable forms and special metrics, math/0107101 [INSPIRE].
  8. [8]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  10. [10]
    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Jeschek and F. Witt, Generalised G 2 - structures and type IIB superstrings, JHEP 03 (2005) 053 [hep-th/0412280] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Graña, J. Louis, A. Sim and D. Waldram, E7(7) formulation of N = 2 backgrounds, JHEP 07 (2009) 104 [arXiv:0904.2333] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Louis and A. Micu, Type 2 theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    A.-K. Kashani-Poor and R. Minasian, Towards reduction of type-II theories on SU(3) structure manifolds, JHEP 03 (2007) 109 [hep-th/0611106] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    R. D’Auria, S. Ferrara and M. Trigiante, On the supergravity formulation of mirror symmetry in generalized Calabi-Yau manifolds, Nucl. Phys. B 780 (2007) 28 [hep-th/0701247] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    P. Koerber and L. Martucci, From ten to four and back again: How to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    D. Cassani and A. Bilal, Effective actions and N = 1 vacuum conditions from SU(3) × SU(3) compactifications, JHEP 09 (2007) 076 [arXiv:0707.3125] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    D. Cassani, Reducing democratic type-II supergravity on SU(3) × SU(3) structures, JHEP 06 (2008) 027 [arXiv:0804.0595] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    D. Cassani and A.-K. Kashani-Poor, Exploiting N = 2 in consistent coset reductions of type IIA, Nucl. Phys. B 817 (2009) 25 [arXiv:0901.4251] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    A. Strominger, Yukawa Couplings in Superstring Compactification, Phys. Rev. Lett. 55 (1985) 2547 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Strominger, special geometry, Commun. Math. Phys. 133 (1990) 163 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Strominger, Loop corrections to the universal hypermultiplet, Phys. Lett. B 421 (1998) 139 [hep-th/9706195] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    H. Gunther, C. Herrmann and J. Louis, Quantum corrections in the hypermultiplet moduli space, Fortsch. Phys. 48 (2000) 119 [hep-th/9901137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079 [hep-th/0307268] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    D. Robles-Llana, F. Saueressig and S. Vandoren, String loop corrected hypermultiplet moduli spaces, JHEP 03 (2006) 081 [hep-th/0602164] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara et al., N=2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Craps, F. Roose, W. Troost and A. Van Proeyen, What is special Kähler geometry?, Nucl. Phys. B 503 (1997) 565 [hep-th/9703082] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Bagger and E. Witten, Matter Couplings in N = 2 Supergravity, Nucl. Phys. B 222 (1983) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    S. Ferrara and S. Sabharwal, Dimensional Reduction of Type II Superstrings, Class. Quant. Grav. 6 (1989) L77 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    S. Ferrara and S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, arXiv:1304.3137 [INSPIRE].
  44. [44]
    K.-P. Gemmer, Orientifolds and R 4 -couplings on generalized geometries, Hamburg University diploma thesis, 2010, www.desy.de/uni-th/stringth/Works/Gemmer Diplomarbeit.pdf.
  45. [45]
    A.-K. Kashani-Poor, R. Minasian and H. Triendl, Enhanced supersymmetry from vanishing Euler number, JHEP 04 (2013) 058 [arXiv:1301.5031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    A.-K. Kashani-Poor and A. Tomasiello, A stringy test of flux-induced isometry gauging, Nucl. Phys. B 728 (2005) 135 [hep-th/0505208] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys. B 568 (2000) 475 [hep-th/9909228] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. de Wit, M. Roček and S. Vandoren, Hypermultiplets, hyperKähler cones and quaternion Kähler geometry, JHEP 02 (2001) 039 [hep-th/0101161] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    B. de Wit, M. Roček and S. Vandoren, Gauging isometries on hyperKähler cones and quaternion Kähler manifolds, Phys. Lett. B 511 (2001) 302 [hep-th/0104215] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Bohm, H. Gunther, C. Herrmann and J. Louis, Compactification of type IIB string theory on Calabi-Yau threefolds, Nucl. Phys. B 569 (2000) 229 [hep-th/9908007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    U. Theis and S. Vandoren, N=2 supersymmetric scalar tensor couplings, JHEP 04 (2003) 042 [hep-th/0303048] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mariana Graña
    • 1
  • Jan Louis
    • 2
    • 3
    Email author
  • Ulrich Theis
    • 4
  • Daniel Waldram
    • 5
  1. 1.Institut de Physique Théorique, CEA/SaclayGif-sur-Yvette CedexFrance
  2. 2.Fachbereich Physik der Universität HamburgHamburgGermany
  3. 3.Zentrum für Mathematische PhysikUniversität HamburgHamburgGermany
  4. 4.Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany
  5. 5.Department of PhysicsImperial College LondonLondonU.K.

Personalised recommendations