Holography as a gauge phenomenon in Higher Spin duality

  • Robert de Mello Koch
  • Antal Jevicki
  • João P. Rodrigues
  • Junggi Yoon
Open Access
Regular Article - Theoretical Physics

Abstract

Employing the world line spinning particle picture. We discuss the appearance of several different ‘gauges’ which we use to gain a deeper explanation of the Collective/Gravity identification. We discuss transformations and algebraic equivalences between them. For a bulk identification we develop a ‘gauge independent’ representation where all gauge constraints are eliminated. This ‘gauge reduction’ of Higher Spin Gravity demonstrates that the physical content of 4D AdS HS theory is represented by the dynamics of an unconstrained scalar field in 6d. It is in this gauge reduced form that HS Theory can be seen to be equivalent to a 3 + 3 dimensional bi-local collective representation of CFT3.

Keywords

Duality in Gauge Field Theories AdS-CFT Correspondence 1/N Expansion 

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  4. [4]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    W. Rarita and J. Schwinger, On a theory of particles with half integral spin, Phys. Rev. 60 (1941) 61 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].ADSGoogle Scholar
  8. [8]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Annals Phys. 177 (1987) 63 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  12. [12]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  14. [14]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Jevicki and B. Sakita, Collective Field Approach to the Large-N Limit: Euclidean Field Theories, Nucl. Phys. B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Jevicki and J. Yoon, Field Theory of Primaries in W N Minimal Models, JHEP 11 (2013) 060 [arXiv:1302.3851] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Jevicki, K. Jin and Q. Ye, Collective Dipole Model of AdS/CFT and Higher Spin Gravity, J. Phys. A 44 (2011) 465402 [arXiv:1106.3983] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Jevicki, K. Jin and J. Yoon, 1/N and Loop Corrections in Higher Spin AdS 4 /CFT 3 Duality, Phys. Rev. D 89 (2014) 085039 [arXiv:1401.3318] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    S.J. Brodsky, G.F. de Tèramond and H.G. Dosch, QCD on the Light-Front - A Systematic Approach to Hadron Physics, Few Body Syst. 55 (2014) 407 [arXiv:1310.8648] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch and J. Erlich, Light-Front Holographic QCD and Emerging Confinement, arXiv:1407.8131 [INSPIRE].
  24. [24]
    R.G. Leigh, O. Parrikar and A.B. Weiss, The Holographic Geometry of the Renormalization Group and Higher Spin Symmetries, Phys. Rev. D 89 (2014) 106012 [arXiv:1402.1430] [INSPIRE].ADSGoogle Scholar
  25. [25]
    R.G. Leigh, O. Parrikar and A.B. Weiss, The Exact Renormalization Group and Higher-spin Holography, Phys. Rev. D 91 (2015) 026002 [arXiv:1407.4574] [INSPIRE].Google Scholar
  26. [26]
    L.A. Pando Zayas and C. Peng, Toward a Higher-Spin Dual of Interacting Field Theories, JHEP 10 (2013) 023 [arXiv:1303.6641] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  27. [27]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    R. de Mello Koch, A. Jevicki, K. Jin, J.P. Rodrigues and Q. Ye, S=1 in O(N)/HS duality, Class. Quant. Grav. 30 (2013) 104005 [arXiv:1205.4117] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Das, S.R. Das, A. Jevicki and Q. Ye, Bi-local Construction of Sp(2N)/dS Higher Spin Correspondence, JHEP 01 (2013) 107 [arXiv:1205.5776] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical Formulation of O(N) Vector/Higher Spin Correspondence, arXiv:1408.4800 [INSPIRE].
  32. [32]
    S. Giombi and I.R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    S. Giombi, I.R. Klebanov and B.R. Safdi, Higher Spin AdS d+1 /CFT d at One Loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    S.M. Kuzenko, S.L. Lyakhovich, A.Y. Segal and A.A. Sharapov, Anti-de Sitter spinning particle and two sphere, hep-th/9411162 [INSPIRE].
  36. [36]
    S.M. Kuzenko, S.L. Lyakhovich, A.Y. Segal and A.A. Sharapov, Massive spinning particle on anti-de Sitter space, Int. J. Mod. Phys. A 11 (1996) 3307 [hep-th/9509062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, Wave Equations for Arbitrary Spin From Quantization of the Extended Supersymmetric Spinning Particle, Phys. Lett. B 215 (1988) 555 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    I.A. Bandos, J. Lukierski and D.P. Sorokin, Superparticle models with tensorial central charges, Phys. Rev. D 61 (2000) 045002 [hep-th/9904109] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    I.A. Bandos, J. Lukierski, C. Preitschopf and D.P. Sorokin, OSp supergroup manifolds, superparticles and supertwistors, Phys. Rev. D 61 (2000) 065009 [hep-th/9907113] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    V.E. Didenko and M.A. Vasiliev, Free field dynamics in the generalized AdS (super)space, J. Math. Phys. 45 (2004) 197 [hep-th/0301054] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  42. [42]
    G. Barnich and M. Grigoriev, Parent form for higher spin fields on anti-de Sitter space, JHEP 08 (2006) 013 [hep-th/0602166] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    J.M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys. Rev. D 22 (1980) 1882 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    M.A. Vasiliev, Holography, Unfolding and Higher-Spin Theory, J. Phys. A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition Functions and Casimir Energies in Higher Spin AdS d+1 /CFT d, Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M.A. Vasiliev, Higher-Spin Theory and Space-Time Metamorphoses, Lect. Notes Phys. 892 (2015) 227 [arXiv:1404.1948] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Robert de Mello Koch
    • 2
  • Antal Jevicki
    • 1
  • João P. Rodrigues
    • 2
  • Junggi Yoon
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.
  2. 2.National Institute for Theoretical Physics, School of Physics and Centre for Theoretical PhysicsUniversity of the WitwatersrandWitsSouth Africa

Personalised recommendations