Entwinement and the emergence of spacetime

  • Vijay Balasubramanian
  • Borun D. Chowdhury
  • Bartłlomiej Czech
  • Jan de Boer
Open Access
Regular Article - Theoretical Physics

Abstract

It is conventional to study the entanglement between spatial regions of a quantum field theory. However, in some systems entanglement can be dominated by “internal”, possibly gauged, degrees of freedom that are not spatially organized, and that can give rise to gaps smaller than the inverse size of the system. In a holographic context, such small gaps are associated to the appearance of horizons and singularities in the dual spacetime. Here, we propose a concept of entwinement, which is intended to capture this fine structure of the wavefunction. Holographically, entwinement probes the entanglement shadow — the region of spacetime not probed by the minimal surfaces that compute spatial entanglement in the dual field theory. We consider the simplest example of this scenario — a 2d conformal field theory (CFT) that is dual to a conical defect in AdS3 space. Following our previous work, we show that spatial entanglement in the CFT reproduces spacetime geometry up to a finite distance from the conical defect. We then show that the interior geometry up to the defect can be reconstructed from entwinement that is sensitive to the discretely gauged, fractionated degrees of freedom of the CFT. Entwinement in the CFT is related to non-minimal geodesics in the conical defect geometry, suggesting a potential quantum information theoretic meaning for these objects in a holographic context. These results may be relevant for the reconstruction of black hole interiors from a dual field theory.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Long strings Black Holes in String Theory 

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    V. Balasubramanian, B. Czech, B.D. Chowdhury and J. de Boer, The entropy of a hole in spacetime, JHEP 10 (2013) 220 [arXiv:1305.0856] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.C. Myers, J. Rao and S. Sugishita, Holographic holes in higher dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Czech, X. Dong and J. Sully, Holographic reconstruction of general bulk surfaces, JHEP 11 (2014) 015 [arXiv:1406.4889] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Headrick, R.C. Myers and J. Wien, Holographic holes and differential entropy, JHEP 10 (2014) 149 [arXiv:1408.4770] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Hammersley, Extracting the bulk metric from boundary information in asymptotically AdS spacetimes, JHEP 12 (2006) 047 [hep-th/0609202] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    S. Bilson, Extracting spacetimes using the AdS/CFT conjecture, JHEP 08 (2008) 073 [arXiv:0807.3695] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Bilson, Extracting spacetimes using the AdS/CFT conjecture. Part II, JHEP 02 (2011) 050 [arXiv:1012.1812] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Spillane, Constructing space from entanglement entropy, arXiv:1311.4516 [INSPIRE].
  14. [14]
    B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D 90 (2014) 106005 [arXiv:1409.4473] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
  16. [16]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  18. [18]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortschr. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, arXiv:1408.6300 [INSPIRE].
  20. [20]
    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  22. [22]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    S.B. Giddings, Black hole information, unitarity and nonlocality, Phys. Rev. D 74 (2006) 106005 [hep-th/0605196] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].ADSGoogle Scholar
  29. [29]
    L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
  30. [30]
    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B 475 (1996) 679 [hep-th/9604042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    R. Bousso and A.L. Mints, Holography and entropy bounds in the plane wave matrix model, Phys. Rev. D 73 (2006) 126005 [hep-th/0512201] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    L. Susskind, Some speculations about black hole entropy in string theory, in C. Teitelboim ed., The black hole, pp. 118–131 [hep-th/9309145] [INSPIRE].
  37. [37]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    S.R. Das and S.D. Mathur, Excitations of D strings, entropy and duality, Phys. Lett. B 375 (1996) 103 [hep-th/9601152] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D 86 (2012) 045014 [arXiv:1108.3568] [INSPIRE].ADSGoogle Scholar
  41. [41]
    E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    E. Verlinde and H. Verlinde, Behind the horizon in AdS/CFT, arXiv:1311.1137 [INSPIRE].
  43. [43]
    E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    V. Balasubramanian, P. Kraus and M. Shigemori, Massless black holes and black rings as effective geometries of the D1-D5 system, Class. Quant. Grav. 22 (2005) 4803 [hep-th/0508110] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  47. [47]
    J. de Boer, M.M. Sheikh-Jabbari and J. Simon, Near horizon limits of massless BTZ and their CFT duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].
  50. [50]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  51. [51]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  52. [52]
    O. Lunin and S.D. Mathur, Correlation functions for M N /S N orbifolds, Commun. Math. Phys. 219 (2001) 399 [hep-th/0006196] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  53. [53]
    E.J. Martinec and W. McElgin, String theory on AdS orbifolds, JHEP 04 (2002) 029 [hep-th/0106171] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    E.J. Martinec and W. McElgin, Exciting AdS orbifolds, JHEP 10 (2002) 050 [hep-th/0206175] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C.A. Agon, M. Headrick, D.L. Jafferis and S. Kasko, Disk entanglement entropy for a Maxwell field, Phys. Rev. D 89 (2014) 025018 [arXiv:1310.4886] [INSPIRE].ADSGoogle Scholar
  57. [57]
    H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K. Ohmori and Y. Tachikawa, Physics at the entangling surface, arXiv:1406.4167 [INSPIRE].
  59. [59]
    V.E. Hubeny, Covariant residual entropy, JHEP 09 (2014) 156 [arXiv:1406.4611] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  61. [61]
    H. Araki and E.H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    B.D. Chowdhury, Limitations of holography, arXiv:1405.4292 [INSPIRE].
  63. [63]
    B.S. Kay, Instability of enclosed horizons, arXiv:1310.7395 [INSPIRE].
  64. [64]
    S.G. Avery and B.D. Chowdhury, No holography for eternal AdS black holes, arXiv:1312.3346 [INSPIRE].
  65. [65]
    S.D. Mathur, What is the dual of two entangled CFTs?, arXiv:1402.6378 [INSPIRE].
  66. [66]
    D. Kabat and G. Lifschytz, Finite N and the failure of bulk locality: black holes in AdS/CFT, JHEP 09 (2014) 077 [arXiv:1405.6394] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    J. Erdmenger, M. Flory and C. Sleight, Conditions on holographic entangling surfaces in higher curvature gravity, JHEP 06 (2014) 104 [arXiv:1401.5075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    F. Nogueira, Extremal surfaces in asymptotically AdS charged boson stars backgrounds, Phys. Rev. D 87 (2013) 106006 [arXiv:1301.4316] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S.A. Gentle and M. Rangamani, Holographic entanglement and causal information in coherent states, JHEP 01 (2014) 120 [arXiv:1311.0015] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Vijay Balasubramanian
    • 1
    • 2
  • Borun D. Chowdhury
    • 3
  • Bartłlomiej Czech
    • 4
  • Jan de Boer
    • 5
  1. 1.David Rittenhouse LaboratoriesUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.CUNY Graduate Center, Initiative for the Theoretical SciencesNew YorkU.S.A.
  3. 3.Department of PhysicsArizona State UniversityTempeU.S.A.
  4. 4.Department of PhysicsStanford UniversityStanfordU.S.A.
  5. 5.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations