# Entwinement and the emergence of spacetime

- 384 Downloads
- 33 Citations

## Abstract

It is conventional to study the entanglement between spatial regions of a quantum field theory. However, in some systems entanglement can be dominated by “internal”, possibly gauged, degrees of freedom that are not spatially organized, and that can give rise to gaps smaller than the inverse size of the system. In a holographic context, such small gaps are associated to the appearance of horizons and singularities in the dual spacetime. Here, we propose a concept of *entwinement*, which is intended to capture this fine structure of the wavefunction. Holographically, entwinement probes the *entanglement shadow* — the region of spacetime not probed by the minimal surfaces that compute spatial entanglement in the dual field theory. We consider the simplest example of this scenario — a 2d conformal field theory (CFT) that is dual to a conical defect in AdS_{3} space. Following our previous work, we show that spatial entanglement in the CFT reproduces spacetime geometry up to a finite distance from the conical defect. We then show that the interior geometry up to the defect can be reconstructed from entwinement that is sensitive to the discretely gauged, fractionated degrees of freedom of the CFT. Entwinement in the CFT is related to non-minimal geodesics in the conical defect geometry, suggesting a potential quantum information theoretic meaning for these objects in a holographic context. These results may be relevant for the reconstruction of black hole interiors from a dual field theory.

### Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Long strings Black Holes in String Theory## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

### References

- [1]S. Ryu and T. Takayanagi,
*Holographic derivation of entanglement entropy from AdS/CFT*,*Phys. Rev. Lett.***96**(2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [2]S. Ryu and T. Takayanagi,
*Aspects of holographic entanglement entropy*,*JHEP***08**(2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [3]V.E. Hubeny, M. Rangamani and T. Takayanagi,
*A covariant holographic entanglement entropy proposal*,*JHEP***07**(2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [4]V. Balasubramanian, B. Czech, B.D. Chowdhury and J. de Boer,
*The entropy of a hole in spacetime*,*JHEP***10**(2013) 220 [arXiv:1305.0856] [INSPIRE].ADSCrossRefGoogle Scholar - [5]V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller,
*Bulk curves from boundary data in holography*,*Phys. Rev.***D 89**(2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar - [6]R.C. Myers, J. Rao and S. Sugishita,
*Holographic holes in higher dimensions*,*JHEP***06**(2014) 044 [arXiv:1403.3416] [INSPIRE].ADSCrossRefGoogle Scholar - [7]B. Czech, X. Dong and J. Sully,
*Holographic reconstruction of general bulk surfaces*,*JHEP***11**(2014) 015 [arXiv:1406.4889] [INSPIRE].ADSCrossRefGoogle Scholar - [8]M. Headrick, R.C. Myers and J. Wien,
*Holographic holes and differential entropy*,*JHEP***10**(2014) 149 [arXiv:1408.4770] [INSPIRE].ADSCrossRefGoogle Scholar - [9]E. Bianchi and R.C. Myers,
*On the architecture of spacetime geometry*,*Class. Quant. Grav.***31**(2014) 214002 [arXiv:1212.5183] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [10]J. Hammersley,
*Extracting the bulk metric from boundary information in asymptotically AdS spacetimes*,*JHEP***12**(2006) 047 [hep-th/0609202] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [11]S. Bilson,
*Extracting spacetimes using the AdS/CFT conjecture*,*JHEP***08**(2008) 073 [arXiv:0807.3695] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [12]S. Bilson,
*Extracting spacetimes using the AdS/CFT conjecture. Part II*,*JHEP***02**(2011) 050 [arXiv:1012.1812] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [13]
- [14]B. Czech and L. Lamprou,
*Holographic definition of points and distances*,*Phys. Rev.***D 90**(2014) 106005 [arXiv:1409.4473] [INSPIRE].ADSGoogle Scholar - [15]M. Van Raamsdonk,
*Building up spacetime with quantum entanglement*,*Gen. Rel. Grav.***42**(2010) 2323 [*Int. J. Mod. Phys.***D 19**(2010) 2429] [arXiv:1005.3035] [INSPIRE]. - [16]B. Swingle,
*Entanglement renormalization and holography*,*Phys. Rev.***D 86**(2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar - [17]B. Swingle,
*Constructing holographic spacetimes using entanglement renormalization*, arXiv:1209.3304 [INSPIRE]. - [18]J. Maldacena and L. Susskind,
*Cool horizons for entangled black holes*,*Fortschr. Phys.***61**(2013) 781 [arXiv:1306.0533] [INSPIRE].CrossRefMathSciNetGoogle Scholar - [19]M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani,
*Causality & holographic entanglement entropy*, arXiv:1408.6300 [INSPIRE]. - [20]V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni,
*Holographic entanglement plateaux*,*JHEP***08**(2013) 092 [arXiv:1306.4004] [INSPIRE].ADSCrossRefGoogle Scholar - [21]T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec,
*AdS dynamics from conformal field theory*, hep-th/9808016 [INSPIRE]. - [22]A.W. Peet and J. Polchinski,
*UV/IR relations in AdS dynamics*,*Phys. Rev.***D 59**(1999) 065011 [hep-th/9809022] [INSPIRE].ADSMathSciNetGoogle Scholar - [23]V. Balasubramanian, S.B. Giddings and A.E. Lawrence,
*What do CFTs tell us about anti-de Sitter space-times?*,*JHEP***03**(1999) 001 [hep-th/9902052] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [24]S.B. Giddings,
*Black hole information, unitarity and nonlocality*,*Phys. Rev.***D 74**(2006) 106005 [hep-th/0605196] [INSPIRE].ADSMathSciNetGoogle Scholar - [25]A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe,
*Holographic representation of local bulk operators*,*Phys. Rev.***D 74**(2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar - [26]I. Heemskerk, J. Penedones, J. Polchinski and J. Sully,
*Holography from conformal field theory*,*JHEP***10**(2009) 079 [arXiv:0907.0151] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [27]A.L. Fitzpatrick and J. Kaplan,
*AdS field theory from conformal field theory*,*JHEP***02**(2013) 054 [arXiv:1208.0337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [28]K. Papadodimas and S. Raju,
*State-dependent bulk-boundary maps and black hole complementarity*,*Phys. Rev.***D 89**(2014) 086010 [arXiv:1310.6335] [INSPIRE].ADSGoogle Scholar - [29]
- [30]J.M. Maldacena and L. Susskind,
*D-branes and fat black holes*,*Nucl. Phys.***B 475**(1996) 679 [hep-th/9604042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [31]R. Bousso and A.L. Mints,
*Holography and entropy bounds in the plane wave matrix model*,*Phys. Rev.***D 73**(2006) 126005 [hep-th/0512201] [INSPIRE].ADSMathSciNetGoogle Scholar - [32]H. Lin, O. Lunin and J.M. Maldacena,
*Bubbling AdS space and 1/2 BPS geometries*,*JHEP***10**(2004) 025 [hep-th/0409174] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [33]D. Berenstein,
*Large-N BPS states and emergent quantum gravity*,*JHEP***01**(2006) 125 [hep-th/0507203] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [34]V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon,
*The library of Babel: on the origin of gravitational thermodynamics*,*JHEP***12**(2005) 006 [hep-th/0508023] [INSPIRE].ADSGoogle Scholar - [35]E. Witten,
*On string theory and black holes*,*Phys. Rev.***D 44**(1991) 314 [INSPIRE].ADSMathSciNetGoogle Scholar - [36]L. Susskind,
*Some speculations about black hole entropy in string theory*, in C. Teitelboim ed.,*The black hole*, pp. 118–131 [hep-th/9309145] [INSPIRE]. - [37]A. Strominger and C. Vafa,
*Microscopic origin of the Bekenstein-Hawking entropy*,*Phys. Lett.***B 379**(1996) 99 [hep-th/9601029] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [38]S.R. Das and S.D. Mathur,
*Excitations of D strings, entropy and duality*,*Phys. Lett.***B 375**(1996) 103 [hep-th/9601152] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [39]S.S. Gubser, I.R. Klebanov and A.W. Peet,
*Entropy and temperature of black 3-branes*,*Phys. Rev.***D 54**(1996) 3915 [hep-th/9602135] [INSPIRE].ADSMathSciNetGoogle Scholar - [40]V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk,
*Momentum-space entanglement and renormalization in quantum field theory*,*Phys. Rev.***D 86**(2012) 045014 [arXiv:1108.3568] [INSPIRE].ADSGoogle Scholar - [41]E. Verlinde and H. Verlinde,
*Black hole entanglement and quantum error correction*,*JHEP***10**(2013) 107 [arXiv:1211.6913] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [42]
- [43]E. Keski-Vakkuri,
*Bulk and boundary dynamics in BTZ black holes*,*Phys. Rev.***D 59**(1999) 104001 [hep-th/9808037] [INSPIRE].ADSMathSciNetGoogle Scholar - [44]V. Balasubramanian, P. Kraus and M. Shigemori,
*Massless black holes and black rings as effective geometries of the D1-D5 system*,*Class. Quant. Grav.***22**(2005) 4803 [hep-th/0508110] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar - [45]V. Balasubramanian and S.F. Ross,
*Holographic particle detection*,*Phys. Rev.***D 61**(2000) 044007 [hep-th/9906226] [INSPIRE].ADSMathSciNetGoogle Scholar - [46]J.D. Brown and M. Henneaux,
*Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity*,*Commun. Math. Phys.***104**(1986) 207 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar - [47]J. de Boer, M.M. Sheikh-Jabbari and J. Simon,
*Near horizon limits of massless BTZ and their CFT duals*,*Class. Quant. Grav.***28**(2011) 175012 [arXiv:1011.1897] [INSPIRE].ADSCrossRefGoogle Scholar - [48]C. Holzhey, F. Larsen and F. Wilczek,
*Geometric and renormalized entropy in conformal field theory*,*Nucl. Phys.***B 424**(1994) 443 [hep-th/9403108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [49]P. Calabrese and J.L. Cardy,
*Entanglement entropy and quantum field theory*,*J. Stat. Mech.*(2004) P06002 [hep-th/0405152] [INSPIRE]. - [50]
- [51]M. Headrick,
*Entanglement Renyi entropies in holographic theories*,*Phys. Rev.***D 82**(2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar - [52]O. Lunin and S.D. Mathur,
*Correlation functions for M*^{N}*/S*_{N}*orbifolds*,*Commun. Math. Phys.***219**(2001) 399 [hep-th/0006196] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar - [53]E.J. Martinec and W. McElgin,
*String theory on AdS orbifolds*,*JHEP***04**(2002) 029 [hep-th/0106171] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [54]E.J. Martinec and W. McElgin,
*Exciting AdS orbifolds*,*JHEP***10**(2002) 050 [hep-th/0206175] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [55]W. Donnelly,
*Decomposition of entanglement entropy in lattice gauge theory*,*Phys. Rev.***D 85**(2012) 085004 [arXiv:1109.0036] [INSPIRE].ADSGoogle Scholar - [56]C.A. Agon, M. Headrick, D.L. Jafferis and S. Kasko,
*Disk entanglement entropy for a Maxwell field*,*Phys. Rev.***D 89**(2014) 025018 [arXiv:1310.4886] [INSPIRE].ADSGoogle Scholar - [57]H. Casini, M. Huerta and J.A. Rosabal,
*Remarks on entanglement entropy for gauge fields*,*Phys. Rev.***D 89**(2014) 085012 [arXiv:1312.1183] [INSPIRE].ADSGoogle Scholar - [58]
- [59]V.E. Hubeny,
*Covariant residual entropy*,*JHEP***09**(2014) 156 [arXiv:1406.4611] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [60]M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli,
*Geometry of the (2+1) black hole*,*Phys. Rev.***D 48**(1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar - [61]H. Araki and E.H. Lieb,
*Entropy inequalities*,*Commun. Math. Phys.***18**(1970) 160 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [62]
- [63]
- [64]S.G. Avery and B.D. Chowdhury,
*No holography for eternal AdS black holes*, arXiv:1312.3346 [INSPIRE]. - [65]
- [66]D. Kabat and G. Lifschytz,
*Finite N and the failure of bulk locality: black holes in AdS/CFT*,*JHEP***09**(2014) 077 [arXiv:1405.6394] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [67]J. Erdmenger, M. Flory and C. Sleight,
*Conditions on holographic entangling surfaces in higher curvature gravity*,*JHEP***06**(2014) 104 [arXiv:1401.5075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [68]F. Nogueira,
*Extremal surfaces in asymptotically AdS charged boson stars backgrounds*,*Phys. Rev.***D 87**(2013) 106006 [arXiv:1301.4316] [INSPIRE].ADSGoogle Scholar - [69]S.A. Gentle and M. Rangamani,
*Holographic entanglement and causal information in coherent states*,*JHEP***01**(2014) 120 [arXiv:1311.0015] [INSPIRE].CrossRefGoogle Scholar