Supersymmetry breaking and inflation from higher curvature supergravity

  • I. Dalianis
  • F. Farakos
  • A. Kehagias
  • A. Riotto
  • R. von Unge
Open Access
Regular Article - Theoretical Physics


The generic embedding of the R + R 2 higher curvature theory into old-minimal supergravity leads to models with rich vacuum structure in addition to its well-known inflationary properties. When the model enjoys an exact R-symmetry, there is an inflationary phase with a single supersymmetric Minkowski vacuum. This appears to be a special case of a more generic set-up, which in principle may include R-symmetry violating terms which are still of pure supergravity origin. By including the latter terms, we find new supersymmetry breaking vacua compatible with single-field inflationary trajectories. We discuss explicitly two such models and we illustrate how the inflaton is driven towards the supersymmetry breaking vacuum after the inflationary phase. In these models the gravitino mass is of the same order as the inflaton mass. Therefore, pure higher curvature supergravity may not only accommodate the proper inflaton field, but it may also provide the appropriate hidden sector for supersymmetry breaking after inflation has ended.


Supersymmetry Breaking Cosmology of Theories beyond the SM Superspaces Supergravity Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, hep-th/0108200 [INSPIRE].
  2. [2]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  3. [3]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP, Bristol U.K. (1998).zbMATHGoogle Scholar
  4. [4]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  5. [5]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuation and Nonsingular Universe. (In Russian), JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A.A. Starobinsky, The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitte r Cosmology and the Microwave Background Anisotropy, Sov. Astron. Lett. 9 (1983) 302 [INSPIRE].ADSGoogle Scholar
  9. [9]
    B. Whitt, Fourth Order Gravity as General Relativity Plus Matter, Phys. Lett. B 145 (1984) 176 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    S. Ferrara, M.T. Grisaru and P. van Nieuwenhuizen, Poincaré and Conformal Supergravity Models With Closed Algebras, Nucl. Phys. B 138 (1978) 430 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Cecotti, Higher Derivative Supergravity is Equivalent to Standard Supergravity Coupled to Matter. 1, Phys. Lett. B 190 (1987) 86 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New Minimal Higher Derivative Supergravity Coupled to Matter, Nucl. Phys. B 306 (1988) 160 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    S. Cecotti, S. Ferrara and L. Girardello, Massive Vector Multiplets From Superstrings, Nucl. Phys. B 294 (1987) 537 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Farakos, A. Kehagias and A. Riotto, On the Starobinsky Model of Inflation from Supergravity, Nucl. Phys. B 876 (2013) 187 [arXiv:1307.1137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal Supergravity Models of Inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Van Proeyen, Massive Vector Multiplets in Supergravity, Nucl. Phys. B 162 (1980) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Higher Order Corrections in Minimal Supergravity Models of Inflation, JCAP 11 (2013) 046 [arXiv:1309.1085] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. Ferrara, P. Fré and A.S. Sorin, On the Topology of the Inflaton Field in Minimal Supergravity Models, JHEP 04 (2014) 095 [arXiv:1311.5059] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Ferrara, P. Fré and A.S. Sorin, On the Gauged Kähler Isometry in Minimal Supergravity Models of Inflation, Fortsch. Phys. 62 (2014) 277 [arXiv:1401.1201] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Farakos and R. von Unge, Naturalness and Chaotic Inflation in Supergravity from Massive Vector Multiplets, arXiv:1404.3739 [INSPIRE].
  21. [21]
    S. Ferrara and M. Porrati, Minimal R + R 2 Supergravity Models of Inflation Coupled to Matter, Phys. Lett. B 737 (2014) 135 [arXiv:1407.6164] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, JCAP 06 (2013) 028 [arXiv:1306.3214] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP 07 (2013) 002 [arXiv:1306.5220] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Ferrara, R. Kallosh and A. Van Proeyen, On the Supersymmetric Completion of R + R 2 Gravity and Cosmology, JHEP 11 (2013) 134 [arXiv:1309.4052] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.V. Ketov and T. Terada, Old-minimal supergravity models of inflation, JHEP 12 (2013) 040 [arXiv:1309.7494] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Kallosh, A. Linde and D. Roest, Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett. 112 (2014) 011303 [arXiv:1310.3950] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Kallosh, A. Linde and D. Roest, Superconformal Inflationary α-Attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S. Cecotti and R. Kallosh, Cosmological Attractor Models and Higher Curvature Supergravity, JHEP 05 (2014) 114 [arXiv:1403.2932] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    S. Ferrara, A. Kehagias and A. Riotto, The Imaginary Starobinsky Model, Fortsch. Phys. 62 (2014) 573 [arXiv:1403.5531] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Kamada and J. Yokoyama, Topological inflation from the Starobinsky model in supergravity, Phys. Rev. D 90 (2014) 103520 [arXiv:1405.6732] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Ferrara and A. Kehagias, Higher Curvature Supergravity, Supersymmetry Breaking and Inflation, arXiv:1407.5187 [INSPIRE].
  34. [34]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Ozkan and Y. Pang, R n Extension of Starobinsky Model in Old Minimal Supergravity, Class. Quant. Grav. 31 (2014) 205004 [arXiv:1402.5427] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    S.V. Ketov and A.A. Starobinsky, Embedding (R + R 2 )-Inflation into Supergravity, Phys. Rev. D 83 (2011) 063512 [arXiv:1011.0240] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.V. Ketov and A.A. Starobinsky, Inflation and non-minimal scalar-curvature coupling in gravity and supergravity, JCAP 08 (2012) 022 [arXiv:1203.0805] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.V. Ketov and S. Tsujikawa, Consistency of inflation and preheating in F(R) supergravity, Phys. Rev. D 86 (2012) 023529 [arXiv:1205.2918] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Y. Watanabe and J. Yokoyama, Gravitational modulated reheating and non-Gaussianity in supergravity R 2 inflation, Phys. Rev. D 87 (2013) 103524 [arXiv:1303.5191] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S.V. Ketov and T. Terada, Inflation in Supergravity with a Single Chiral Superfield, Phys. Lett. B 736 (2014) 272 [arXiv:1406.0252] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    S.V. Ketov and T. Terada, Generic Scalar Potentials for Inflation in Supergravity with a Single Chiral Superfield, JHEP 12 (2014) 062 [arXiv:1408.6524] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, No-Scale Supergravity Realization of the Starobinsky Model of Inflation, Phys. Rev. Lett. 111 (2013) 111301 [arXiv:1305.1247] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity, JCAP 10 (2013) 009 [arXiv:1307.3537] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, A No-Scale Inflationary Model to Fit Them All, JCAP 08 (2014) 044 [arXiv:1405.0271] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Ellis and N.E. Mavromatos, Inflation induced by Gravitino Condensation in Supergravity, Phys. Rev. D 88 (2013) 085029 [arXiv:1308.1906] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Alexandre, N. Houston and N.E. Mavromatos, Starobinsky-type Inflation in Dynamical Supergravity Breaking Scenarios, Phys. Rev. D 89 (2014) 027703 [arXiv:1312.5197] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J. Alexandre, N. Houston and N.E. Mavromatos, Inflation via Gravitino Condensation in Dynamically Broken Supergravity, arXiv:1409.3183 [INSPIRE].
  48. [48]
    S.V. Ketov, Starobinsky Model in N = 2 Supergravity, Phys. Rev. D 89 (2014) 085042 [arXiv:1402.0626] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Ceresole, G. Dall’Agata, S. Ferrara, M. Trigiante and A. Van Proeyen, A search for an \( \mathcal{N}=2 \) inflaton potential, Fortsch. Phys. 62 (2014) 584 [arXiv:1404.1745] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Fré, A.S. Sorin and M. Trigiante, The c-map, Tits Satake subalgebras and the search for \( \mathcal{N}=2 \) inflaton potentials, arXiv:1407.6956 [INSPIRE].
  51. [51]
    K. Forger, B.A. Ovrut, S.J. Theisen and D. Waldram, Higher derivative gravity in string theory, Phys. Lett. B 388 (1996) 512 [hep-th/9605145] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    D. Roest, M. Scalisi and I. Zavala, Kähler potentials for Planck inflation, JCAP 11 (2013) 007 [arXiv:1307.4343] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    N. Kitazawa and A. Sagnotti, Pre-inflationary clues from String Theory?, JCAP 04 (2014) 017 [arXiv:1402.1418] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    C. Kounnas, D. Lüst and N. Toumbas, \( {\mathrm{\mathcal{R}}}^2 \) inflation from scale invariant supergravity and anomaly free superstrings with fluxes, arXiv:1409.7076 [INSPIRE].
  55. [55]
    E. Kiritsis, Asymptotic freedom, asymptotic flatness and cosmology, JCAP 11 (2013) 011 [arXiv:1307.5873] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    E.J. Copeland, C. Rahmede and I.D. Saltas, Asymptotically Safe Starobinsky Inflation, arXiv:1311.0881 [INSPIRE].
  57. [57]
    A. Hindawi, B.A. Ovrut and D. Waldram, Four-dimensional higher derivative supergravity and spontaneous supersymmetry breaking, Nucl. Phys. B 476 (1996) 175 [hep-th/9511223] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    A. Hindawi, B.A. Ovrut and D. Waldram, Soft supersymmetry breaking induced by higher derivative supergravitation in the electroweak standard model, Phys. Lett. B 381 (1996) 154 [hep-th/9602075] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Ferrara, A. Kehagias and M. Porrati, Vacuum structure in a chiral R + R n modification of pure supergravity, Phys. Lett. B 727 (2013) 314 [arXiv:1310.0399] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Kugo and S. Uehara, Conformal and Poincaré Tensor Calculi in N = 1 Supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    T. Kugo and S. Uehara, N = 1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  62. [62]
    U. Lindström, A. Karlhede and M. Roček, The Component Gauges in Supergravity, Nucl. Phys. B 191 (1981) 549 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D. Butter, N=1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    S. Ferrara and S. Sabharwal, Structure of New Minimal Supergravity, Annals Phys. 189 (1989) 318 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation Between Different Auxiliary Field Formulations of N = 1 Supergravity Coupled to Matter, Nucl. Phys. B 223 (1983) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Ferrara and M. Villasante, Curvatures, Gauss-Bonnet and Chern-Simons Multiplets in Old Minimal N = 1 Supergravity, J. Math. Phys. 30 (1989) 104 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  67. [67]
    U. Lindström and M. Roček, CONSTRAINED LOCAL SUPERFIELDS, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  68. [68]
    F. Farakos and A. Kehagias, Decoupling Limits of sGoldstino Modes in Global and Local Supersymmetry, Phys. Lett. B 724 (2013) 322 [arXiv:1302.0866] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    S.P. de Alwis, A Local Evaluation of Global Issues in SUSY breaking, JHEP 01 (2013) 190 [arXiv:1211.3913] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, JHEP 1410 (2014) 11 [arXiv:1406.4866] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    I. Dalianis and Z. Lalak, Cosmological vacuum selection and metastable SUSY breaking, JHEP 12 (2010) 045 [arXiv:1001.4106] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    I. Dalianis and Z. Lalak, Cosmological vacuum selection, metastable SUSY breaking and moduli, Fortsch. Phys. 59 (2011) 1103 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    A. Kehagias, A.M. Dizgah and A. Riotto, Remarks on the Starobinsky model of inflation and its descendants, Phys. Rev. D 89 (2014) 043527 [arXiv:1312.1155] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • I. Dalianis
    • 1
  • F. Farakos
    • 2
  • A. Kehagias
    • 1
    • 3
  • A. Riotto
    • 3
  • R. von Unge
    • 2
  1. 1.Physics DivisionNational Technical University of AthensAthensGreece
  2. 2.Institute for Theoretical PhysicsMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Theoretical Physics and Center for Astroparticle Physics (CAP)Geneva 4Switzerland

Personalised recommendations