Advertisement

Rare flavor processes in Maximally Natural Supersymmetry

  • Isabel García García
  • John March-Russell
Open Access
Regular Article - Theoretical Physics

Abstract

We study CP-conserving rare flavor violating processes in the recently proposed theory of Maximally Natural Supersymmetry (MNSUSY). MNSUSY is an unusual supersymmetric (SUSY) extension of the Standard Model (SM) which, remarkably, is untuned at present LHC limits. It employs Scherk-Schwarz breaking of SUSY by boundary conditions upon compactifying an underlying 5-dimensional (5D) theory down to 4D, and is not well-described by softly-broken \( \mathcal{N}=1 \) SUSY, with much different phenomenology than the Minimal Supersymmetric Standard Model (MSSM) and its variants. The usual CP-conserving SUSY-flavor problem is automatically solved in MNSUSY due to a residual almost exact U(1) R symmetry, naturally heavy and highly degenerate 1st- and 2nd-generation sfermions, and heavy gauginos and Higgsinos. Depending on the exact implementation of MNSUSY there exist important new sources of flavor violation involving gauge boson Kaluza-Klein (KK) excitations. The spatial localization properties of the matter multiplets, in particular the brane localization of the 3rd generation states, imply KK-parity is broken and tree-level contributions to flavor changing neutral currents are present in general. Nevertheless, we show that simple variants of the basic MNSUSY model are safe from present flavor constraints arising from kaon and B-meson oscillations, the rare decays B s,d  → μ + μ , μ → ēee and μ-e conversion in nuclei. We also briefly discuss some special features of the radiative decays μ → eγ and \( \overline{B}\to {X}_s\gamma \). Future experiments, especially those concerned with lepton flavor violation, should see deviations from SM predictions unless one of the MNSUSY variants with enhanced flavor symmetries is realized.

Keywords

Phenomenology of Field Theories in Higher Dimensions Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The Scale-Invariant NMSSM and the 126 GeV Higgs Boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E. Hardy, Is Natural SUSY Natural?, JHEP 10 (2013) 133 [arXiv:1306.1534] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.L. Feng, Naturalness and the Status of Supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The price of being SM-like in SUSY, JHEP 04 (2014) 180 [arXiv:1401.8291] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Fan and M. Reece, A New Look at Higgs Constraints on Stops, JHEP 06 (2014) 031 [arXiv:1401.7671] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Dimopoulos, K. Howe and J. March-Russell, Maximally Natural Supersymmetry, Phys. Rev. Lett. 113 (2014) 111802 [arXiv:1404.7554] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Barbieri, G. Marandella and M. Papucci, The Higgs mass as a function of the compactification scale, Nucl. Phys. B 668 (2003) 273 [hep-ph/0305044] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Barbieri, L.J. Hall, G. Marandella, Y. Nomura, T. Okui et al., Radiative electroweak symmetry breaking from a quasilocalized top quark, Nucl. Phys. B 663 (2003) 141 [hep-ph/0208153] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Barbieri, G. Marandella and M. Papucci, Breaking the electroweak symmetry and supersymmetry by a compact extra dimension, Phys. Rev. D 66 (2002) 095003 [hep-ph/0205280] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Barbieri, L.J. Hall and Y. Nomura, A Constrained standard model from a compact extra dimension, Phys. Rev. D 63 (2001) 105007 [hep-ph/0011311] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Delgado, A. Pomarol and M. Quirós, Electroweak and flavor physics in extensions of the standard model with large extra dimensions, JHEP 01 (2000) 030 [hep-ph/9911252] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Delgado, A. Pomarol and M. Quirós, Supersymmetry and electroweak breaking from extra dimensions at the TeV scale, Phys. Rev. D 60 (1999) 095008 [hep-ph/9812489] [INSPIRE].ADSGoogle Scholar
  18. [18]
    H.D. Kim, Softness of Scherk-Schwarz supersymmetry breaking, Phys. Rev. D 65 (2002) 105021 [hep-th/0109101] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Dimopoulos, K. Howe, and J. March-Russell, Structure of Maximally Natural Supersymmetry, in preparation.Google Scholar
  21. [21]
    R. Davies, J. March-Russell and M. McCullough, A Supersymmetric One Higgs Doublet Model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    M.A. Luty, 2004 TASI lectures on supersymmetry breaking, hep-th/0509029 [INSPIRE].
  23. [23]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ϵ K and Delta M K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    LHCb collaboration, Observation of \( {B}_s^0-{\overline{B}}_s^0 \) mixing and measurement of mixing frequencies using semileptonic B decays, Eur. Phys. J. C 73 (2013) 2655 [arXiv:1308.1302] [INSPIRE].Google Scholar
  28. [28]
    A. Lenz and U. Nierste, Numerical Updates of Lifetimes and Mixing Parameters of B Mesons, arXiv:1102.4274 [INSPIRE].
  29. [29]
    LHCb collaboration, Measurement of the B s0 → μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou et al., B s,d → ℓ + in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for ℬ(B s,d → μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    SINDRUM II collaboration, W.H. Bertl et al., A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ + → e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  36. [36]
    M. Misiak and M. Poradzinski, Completing the Calculation of BLM corrections to \( \overline{B}\to {X}_s\gamma \), Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685] [INSPIRE].ADSGoogle Scholar
  37. [37]
    CMS collaboration, Measurement of the B(s) to μ + μ branching fraction and search for B0 to μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2002) 024032 [hep-ph/9811448] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    A. Hebecker and J. March-Russell, The Flavor hierarchy and seesaw neutrinos from bulk masses in 5 − D orbifold GUTs, Phys. Lett. B 541 (2002) 338 [hep-ph/0205143] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Hambye, J. March-Russell and S.M. West, TeV scale resonant leptogenesis from supersymmetry breaking, JHEP 07 (2004) 070 [hep-ph/0403183] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, Δ F=2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Ciuchini, V. Lubicz, L. Conti, A. Vladikas, A. Donini et al., Delta M(K) and epsilon(K) in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ETM collaboration, B. Blossier, V. Lubicz, C. Tarantino and S. Simula, Pseudoscalar meson decay constants f(K), f(D) and f(D(s)), from N(f) = 2 twisted mass Lattice QCD, PoS(LATTICE 2008)285 [arXiv:0810.3145] [INSPIRE].
  45. [45]
    R. Babich, N. Garron, C. Hölbling, J. Howard, L. Lellouch et al., \( {K}^0-{\overline{K}}^0 \) mixing beyond the standard model and CP-violating electroweak penguins in quenched QCD with exact chiral symmetry, Phys. Rev. D 74 (2006) 073009 [hep-lat/0605016] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D. Becirevic, V. Giménez, G. Martinelli, M. Papinutto and J. Reyes, B parameters of the complete set of matrix elements of delta B = 2 operators from the lattice, JHEP 04 (2002) 025 [hep-lat/0110091] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N.H. Christ, J.M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner et al., B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks, arXiv:1404.4670 [INSPIRE].
  48. [48]
    D. Becirevic, M. Ciuchini, E. Franco, V. Giménez, G. Martinelli et al., \( {B}_d-{\overline{B}}_d \) mixing and the B d → J/ψK s asymmetry in general SUSY models, Nucl. Phys. B 634 (2002) 105 [hep-ph/0112303] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Blondel, A. Bravar, M. Pohl, S. Bachmann, N. Berger et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].
  50. [50]
    Mu2e collaboration, R. Carey et al., Proposal to search for μ Ne N with a single event sensitivity below 10−16, FERMILAB-PROPOSAL-0973, FNAL-E-0973.Google Scholar
  51. [51]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  52. [52]
    P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Suzuki, D.F. Measday and J.P. Roalsvig, Total Nuclear Capture Rates for Negative Muons, Phys. Rev. C 35 (1987) 2212 [INSPIRE].ADSGoogle Scholar
  54. [54]
    Z. Chacko, M.A. Luty and E. Ponton, Massive higher dimensional gauge fields as messengers of supersymmetry breaking, JHEP 07 (2000) 036 [hep-ph/9909248] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D.M. Ghilencea, S. Groot Nibbelink and H.P. Nilles, Gauge corrections and FI term in 5 − D KK theories, Nucl. Phys. B 619 (2001) 385 [hep-th/0108184] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Marti and A. Pomarol, Fayet-Iliopoulos terms in 5 − D theories and their phenomenological implications, Phys. Rev. D 66 (2002) 125005 [hep-ph/0205034] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    R. Barbieri, R. Contino, P. Creminelli, R. Rattazzi and C.A. Scrucca, Anomalies, Fayet-Iliopoulos terms and the consistency of orbifold field theories, Phys. Rev. D 66 (2002) 024025 [hep-th/0203039] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    E. Hardy and J. March-Russell, Retrofitted Natural Supersymmetry from a U(1), JHEP 05 (2013) 120 [arXiv:1302.5423] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    A.M. Baldini, F. Cei, C. Cerri, S. Dussoni, L. Galli et al., MEG Upgrade Proposal, arXiv:1301.7225 [INSPIRE].
  60. [60]
    S. Ferrara and E. Remiddi, Absence of the Anomalous Magnetic Moment in a Supersymmetric Abelian Gauge Theory, Phys. Lett. B 53 (1974) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguin diagrams, Phys. Rev. D 83 (2011) 073002 [arXiv:1004.2037] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations