Interacting spin-2 fields in three dimensions

  • Hamid R. Afshar
  • Eric A. Bergshoeff
  • Wout Merbis
Open Access
Regular Article - Theoretical Physics


Using the frame formulation of multi-gravity in three dimensions, we show that demanding the presence of secondary constraints which remove the Boulware-Deser ghosts restricts the possible interaction terms of the theory and identifies invertible frame field combinations whose effective metric may consistently couple to matter. The resulting ghost-free theories can be represented by theory graphs which are trees. In the case of three frame fields, we explicitly show that the requirement of positive masses and energies for the bulk spin-2 modes in AdS3 is consistent with a positive central charge for the putative dual CFT2.


Classical Theories of Gravity AdS-CFT Correspondence Chern-Simons Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, No consistent cross interactions for a collection of massless spin-2 fields, hep-th/0009109 [INSPIRE].
  3. [3]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    S.F. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. de Rham, Massive gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].Google Scholar
  10. [10]
    K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    N. Khosravi, N. Rahmanpour, H.R. Sepangi and S. Shahidi, Multi-metric gravity via massive gravity, Phys. Rev. D 85 (2012) 024049 [arXiv:1111.5346] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Metric formulation of ghost-free multivielbein theory, arXiv:1204.5202 [INSPIRE].
  13. [13]
    K. Nomura and J. Soda, When is multimetric gravity ghost-free?, Phys. Rev. D 86 (2012) 084052 [arXiv:1207.3637] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, On consistent theories of massive spin-2 fields coupled to gravity, JHEP 05 (2013) 086 [arXiv:1208.1515] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Tamanini, E.N. Saridakis and T.S. Koivisto, The cosmology of interacting spin-2 fields, JCAP 02 (2014) 015 [arXiv:1307.5984] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J. Noller, J.H.C. Scargill and P.G. Ferreira, Interacting spin-2 fields in the Stückelberg picture, JCAP 02 (2014) 007 [arXiv:1311.7009] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    C. Deffayet, J. Mourad and G. Zahariade, A note onsymmetricvielbeins in bimetric, massive, perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    C. Deffayet, J. Mourad and G. Zahariade, Covariant constraints in ghost free massive gravity, JCAP 01 (2013) 032 [arXiv:1207.6338] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-dreibein gravity: a two-frame-field model of 3D massive gravity, Phys. Rev. Lett. 111 (2013) 111102 [arXiv:1307.2774] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Bañados, C. Deffayet and M. Pino, The Boulware-Deser mode in 3D first-order massive gravity, Phys. Rev. D 88 (2013) 124016 [arXiv:1310.3249] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E.A. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Chern-Simons-like gravity theories, Lect. Notes Phys. 892 (2015) 181 [arXiv:1402.1688] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    Y. Yamashita, A. De Felice and T. Tanaka, Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter, arXiv:1408.0487 [INSPIRE].
  23. [23]
    C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity, arXiv:1408.1678 [INSPIRE].
  24. [24]
    J. Noller and S. Melville, The coupling to matter in massive, bi- and multi-gravity, arXiv:1408.5131 [INSPIRE].
  25. [25]
    S.F. Hassan, M. Kocic and A. Schmidt-May, Absence of ghost in a new bimetric-matter coupling, arXiv:1409.1909 [INSPIRE].
  26. [26]
    A. Schmidt-May, Mass eigenstates in bimetric theory with matter coupling, arXiv:1409.3146 [INSPIRE].
  27. [27]
    C. de Rham, L. Heisenberg and R.H. Ribeiro, Ghosts and matter couplings in massive gravity, bigravity and multigravity, Phys. Rev. D 90 (2014) 124042 [arXiv:1409.3834] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Heisenberg, Quantum corrections in massive bigravity and new effective composite metrics, arXiv:1410.4239 [INSPIRE].
  29. [29]
    C. de Rham, A. Matas, N. Ondo and A.J. Tolley, Interactions of charged spin-2 fields, arXiv:1410.5422 [INSPIRE].
  30. [30]
    H.R. Afshar, E.A. Bergshoeff and W. Merbis, Extended massive gravity in three dimensions, JHEP 08 (2014) 115 [arXiv:1405.6213] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    O. Hohm, A. Routh, P.K. Townsend and B. Zhang, On the Hamiltonian form of 3D massive gravity, Phys. Rev. D 86 (2012) 084035 [arXiv:1208.0038] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Bañados and S. Theisen, Three-dimensional massive gravity and the bigravity black hole, JHEP 11 (2009) 033 [arXiv:0909.1163] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H.R. Afshar, M. Alishahiha and A. Naseh, On three dimensional bigravity, Phys. Rev. D 81 (2010) 044029 [arXiv:0910.4350] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E.A. Bergshoeff, A.F. Goya, W. Merbis and J. Rosseel, Logarithmic AdS waves and zwei-dreibein gravity, JHEP 04 (2014) 012 [arXiv:1401.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.F. Goya, Anisotropic scale invariant spacetimes and black holes in zwei-dreibein gravity, JHEP 09 (2014) 132 [arXiv:1406.4771] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    E. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Minimal massive 3D gravity, Class. Quant. Grav. 31 (2014) 145008 [arXiv:1404.2867] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Hamid R. Afshar
    • 1
  • Eric A. Bergshoeff
    • 1
  • Wout Merbis
    • 2
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations