Characterising dark matter searches at colliders and direct detection experiments: vector mediators

  • Oliver Buchmueller
  • Matthew J. Dolan
  • Sarah A. Malik
  • Christopher McCabe
Open Access
Regular Article - Experimental Physics


We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: m DM , M med , g DM and g q, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. Finally, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.


Exotics Beyond Standard Model Hadron-Hadron Scattering Particle and resonance production 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  3. [3]
    CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS Collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-048 (2012).
  5. [5]
    Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].Google Scholar
  6. [6]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Goodman et al., Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Rajaraman, W. Shepherd, T.M.P. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  12. [12]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSGoogle Scholar
  13. [13]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P.J. Fox and C. Williams, Next-to-leading order predictions for dark matter production at hadron colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Goodman and W. Shepherd, LHC bounds on UV-complete models of dark matter, arXiv:1111.2359 [INSPIRE].
  16. [16]
    I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Part III: analysis for the t-channel, arXiv:1405.3101 [INSPIRE].
  20. [20]
    Y. Bai and T.M.P. Tait, Searches with mono-leptons, Phys. Lett. B 723 (2013) 384 [arXiv:1208.4361] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L. Carpenter et al., Mono-Higgs-boson: a new collider probe of dark matter, Phys. Rev. D 89 (2014) 075017 [arXiv:1312.2592] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A.A. Petrov and W. Shepherd, Searching for dark matter at LHC with Mono-Higgs production, Phys. Lett. B 730 (2014) 178 [arXiv:1311.1511] [INSPIRE].ADSGoogle Scholar
  23. [23]
    LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].Google Scholar
  25. [25]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s} \) = 8 TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [Erratum ibid. 1401 (2014) 109] [arXiv:1308.1841] [INSPIRE].
  26. [26]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].ADSGoogle Scholar
  27. [27]
    O. Buchmueller and J. Marrouche, Universal mass limits on gluino and third-generation squarks in the context of natural-like SUSY spectra, Int. J. Mod. Phys. A 29 (2014) 1450032 [arXiv:1304.2185] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Barnard and B. Farmer, A simple technique for combining simplified models and its application to direct stop production, JHEP 06 (2014) 132 [arXiv:1402.3298] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a razor to dark matter parameter space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. An, X. Ji and L.-T. Wang, Light dark matter and Z dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Fermi-LAT collaboration, M. Ackermann et al., Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications, Phys. Rev. D 88 (2013) 082002 [arXiv:1305.5597] [INSPIRE].ADSGoogle Scholar
  34. [34]
    U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP 07 (2013) 125 [arXiv:1208.4605] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].ADSGoogle Scholar
  36. [36]
    H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].ADSGoogle Scholar
  37. [37]
    Y. Bai and J. Berger, Fermion portal dark matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [Erratum ibid. 1401 (2014) 162] [arXiv:1308.2679] [INSPIRE].
  39. [39]
    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus the rest of the world I: t-channel models, JHEP 11 (2014) 024 [arXiv:1402.2285] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Hamaguchi, S.P. Liew, T. Moroi and Y. Yamamoto, Isospin-violating dark matter with colored mediators, JHEP 05 (2014) 086 [arXiv:1403.0324] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Garny, A. Ibarra, S. Rydbeck and S. Vogl, Majorana dark matter with a coloured mediator: collider vs. direct and indirect searches, JHEP 06 (2014) 169 [arXiv:1403.4634] [INSPIRE].
  42. [42]
    P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and dark matter constraints on a Z in models with a hidden valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An effective Z , Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Y. Mambrini, The ZZ kinetic mixing in the light of the recent direct and indirect dark matter searches, JCAP 07 (2011) 009 [arXiv:1104.4799] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P. Gondolo, P. Ko and Y. Omura, Light dark matter in leptophobic Z models, Phys. Rev. D 85 (2012) 035022 [arXiv:1106.0885] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z , JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. An, R. Huo and L.-T. Wang, Searching for low mass dark portal at the LHC, Phys. Dark Univ. 2 (2013) 50 [arXiv:1212.2221] [INSPIRE].Google Scholar
  50. [50]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSGoogle Scholar
  52. [52]
    O. Lebedev and Y. Mambrini, Axial dark matter: the case for an invisible Z , Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Davidson, Including the Z in an effective field theory for dark matter at the LHC, JHEP 1410 (2014) 84 [arXiv:1403.5161] [INSPIRE].Google Scholar
  54. [54]
    M. Fairbairn and J. Heal, On the complementarity of dark matter searches at resonance, arXiv:1406.3288 [INSPIRE].
  55. [55]
    D.E. Soper, M. Spannowsky, C.J. Wallace and T.M.P. Tait, Scattering of dark particles with light mediators, Phys. Rev. D 90 (2014) 115005 [arXiv:1407.2623] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Kumar and D. Marfatia, Matrix element analyses of dark matter scattering and annihilation, Phys. Rev. D 88 (2013) 014035 [arXiv:1305.1611] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar
  59. [59]
    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Z interactions, Phys. Rev. D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  61. [61]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Z bosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M.R. Buckley, D. Hooper and J.L. Rosner, A leptophobic Z and dark matter from grand unification, Phys. Lett. B 703 (2011) 343 [arXiv:1106.3583] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Duerr and P. Fileviez Perez, Baryonic dark matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].ADSGoogle Scholar
  65. [65]
    U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].ADSGoogle Scholar
  66. [66]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSGoogle Scholar
  71. [71]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHGoogle Scholar
  72. [72]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  73. [73]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].Google Scholar
  74. [74]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSGoogle Scholar
  75. [75]
    UK Dark Matter collaboration, G.J. Alner et al., First limits on nuclear recoil events from the ZEPLIN I galactic dark matter detector, Astropart. Phys. 23 (2005) 444 [INSPIRE].ADSGoogle Scholar
  76. [76]
    G.J. Alner et al., First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two phase xenon detector for dark matter detection, Astropart. Phys. 28 (2007) 287 [astro-ph/0701858] [INSPIRE].ADSGoogle Scholar
  77. [77]
    D.Y. Akimov et al., WIMP-nucleon cross-section results from the second science run of ZEPLIN-III, Phys. Lett. B 709 (2012) 14 [arXiv:1110.4769] [INSPIRE].ADSGoogle Scholar
  78. [78]
    XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [INSPIRE].ADSGoogle Scholar
  79. [79]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSGoogle Scholar
  80. [80]
    XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].ADSGoogle Scholar
  81. [81]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSGoogle Scholar
  82. [82]
    J.H. Davis, C. Boehm, N. Oppermann, T. Ensslin and T. Lacroix, The XENON100 exclusion limit without considering Leff as a nuisance parameter, Phys. Rev. D 86 (2012) 015027 [arXiv:1203.6823] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.H. Davis, T. Ensslin and C. Boehm, New method for analyzing dark matter direct detection data, Phys. Rev. D 89 (2014) 043505 [arXiv:1208.1850] [INSPIRE].ADSGoogle Scholar
  84. [84]
    LUX collaboration, D.S. Akerib et al., The Large Underground Xenon (LUX) experiment, Nucl. Instrum. Meth. A 704 (2013) 111 [arXiv:1211.3788] [INSPIRE].ADSGoogle Scholar
  85. [85]
    M. Szydagis, A. Fyhrie, D. Thorngren and M. Tripathi, Enhancement of NEST capabilities for simulating low-energy recoils in liquid Xenon, 2013 JINST 8 C10003 [arXiv:1307.6601] [INSPIRE].
  86. [86]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSGoogle Scholar
  87. [87]
    S.K. Lee, M. Lisanti and B.R. Safdi, Dark-matter harmonics beyond annual modulation, JCAP 11 (2013) 033 [arXiv:1307.5323] [INSPIRE].ADSGoogle Scholar
  88. [88]
    C. McCabe, The Earths velocity for direct detection experiments, JCAP 02 (2014) 027 [arXiv:1312.1355] [INSPIRE].ADSGoogle Scholar
  89. [89]
    C. McCabe, The astrophysical uncertainties of dark matter direct detection experiments, Phys. Rev. D 82 (2010) 023530 [arXiv:1005.0579] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Fairbairn, T. Douce and J. Swift, Quantifying astrophysical uncertainties on dark matter direct detection results, Astropart. Phys. 47 (2013) 45 [arXiv:1206.2693] [INSPIRE].ADSGoogle Scholar
  91. [91]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  92. [92]
    G. Duda, A. Kemper and P. Gondolo, Model independent form factors for spin independent neutralino-nucleon scattering from elastic electron scattering data, JCAP 04 (2007) 012 [hep-ph/0608035] [INSPIRE].ADSGoogle Scholar
  93. [93]
    P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys. Rev. D 88 (2013) 083516 [arXiv:1304.7684] [INSPIRE].ADSGoogle Scholar
  94. [94]
    S. Yellin, Finding an upper limit in the presence of unknown background, Phys. Rev. D 66 (2002) 032005 [physics/0203002] [INSPIRE].ADSGoogle Scholar
  95. [95]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].ADSGoogle Scholar
  96. [96]
    D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
  97. [97]
    P. Grothaus, M. Fairbairn and J. Monroe, Directional dark matter detection beyond the neutrino bound, Phys. Rev. D 90 (2014) 055018 [arXiv:1406.5047] [INSPIRE].ADSGoogle Scholar
  98. [98]
    F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].ADSGoogle Scholar
  99. [99]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].ADSGoogle Scholar
  100. [100]
    J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].ADSGoogle Scholar
  101. [101]
    P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].ADSGoogle Scholar
  102. [102]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSMATHGoogle Scholar
  103. [103]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetGoogle Scholar
  104. [104]
    CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].ADSGoogle Scholar
  105. [105]
    C.E. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].ADSGoogle Scholar
  106. [106]
    CoGeNT collaboration, C.E. Aalseth et al., CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors, Phys. Rev. D 88 (2013) 012002 [arXiv:1208.5737] [INSPIRE].ADSGoogle Scholar
  107. [107]
    CoGeNT collaboration, C.E. Aalseth et al., Search for an annual modulation in three years of CoGeNT dark matter detector data, arXiv:1401.3295 [INSPIRE].
  108. [108]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSGoogle Scholar
  109. [109]
    CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].ADSGoogle Scholar
  110. [110]
    R. Bernabei et al., Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J. C 73 (2013) 2648 [arXiv:1308.5109] [INSPIRE].ADSGoogle Scholar
  111. [111]
    J.H. Davis, C. McCabe and C. Boehm, Quantifying the evidence for dark matter in CoGeNT data, JCAP 08 (2014) 014 [arXiv:1405.0495] [INSPIRE].ADSGoogle Scholar
  112. [112]
    A. Brown, S. Henry, H. Kraus and C. McCabe, Extending the CRESST-II commissioning run limits to lower masses, Phys. Rev. D 85 (2012) 021301 [arXiv:1109.2589] [INSPIRE].ADSGoogle Scholar
  113. [113]
    M. Kuzniak, M.G. Boulay and T. Pollmann, Surface roughness interpretation of 730 kg days CRESST-II results, Astropart. Phys. 36 (2012) 77 [arXiv:1203.1576] [INSPIRE].ADSGoogle Scholar
  114. [114]
    CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146] [INSPIRE].ADSGoogle Scholar
  115. [115]
    K. Blum, DAMA vs. the annually modulated muon background, arXiv:1110.0857 [INSPIRE].
  116. [116]
    J. Pradler, B. Singh and I. Yavin, On an unverified nuclear decay and its role in the DAMA experiment, Phys. Lett. B 720 (2013) 399 [arXiv:1210.5501] [INSPIRE].ADSGoogle Scholar
  117. [117]
    J.H. Davis, Fitting the annual modulation in DAMA with neutrons from muons and neutrinos, Phys. Rev. Lett. 113 (2014) 081302 [arXiv:1407.1052] [INSPIRE].ADSGoogle Scholar
  118. [118]
    J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSGoogle Scholar
  119. [119]
    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, arXiv:1307.7135 [INSPIRE].
  120. [120]
    CMS collaboration, tudy of the discovery reach in searches for supersymmetry at CMS with 3000/fb, CMS-PAS-FTR-13-014 (2013).
  121. [121]
    ATLAS collaboration, Search for Supersymmetry at the high luminosity LHC with the ATLAS experiment, ATL-PHYS-PUB-2014-010 (2014).
  122. [122]
    ATLAS collaboration, Sensitivity to WIMP dark matter in the final states containing jets and missing transverse momentum with the ATLAS detector at 14 TeV LHC, ATL-PHYS-PUB-2014-007 (2014).
  123. [123]
    G. Salam and A. Weiler, Collider reach,
  124. [124]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].Google Scholar
  125. [125]
    S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz and M.P. Hobson, Selecting a model of supersymmetry breaking mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [INSPIRE].ADSGoogle Scholar
  126. [126]
    B.C. Allanach and M.J. Dolan, Supersymmetry with prejudice: fitting the wrong model to LHC data, Phys. Rev. D 86 (2012) 055022 [arXiv:1107.2856] [INSPIRE].ADSGoogle Scholar
  127. [127]
    O. Buchmueller et al., The CMSSM and NUHM1 after LHC run 1, Eur. Phys. J. C 74 (2014) 2922 [arXiv:1312.5250] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Oliver Buchmueller
    • 1
  • Matthew J. Dolan
    • 2
  • Sarah A. Malik
    • 1
  • Christopher McCabe
    • 3
    • 4
  1. 1.High Energy Physics GroupBlackett Laboratory, Imperial CollegeLondonU.K.
  2. 2.Theory Group, SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  4. 4.GRAPPA, University of AmsterdamAmsterdamNetherlands

Personalised recommendations