Matching the D64 interaction at two-loops

  • Eric D’Hoker
  • Michael B. Green
  • Boris Pioline
  • Rodolfo Russo
Open Access
Regular Article - Theoretical Physics

Abstract

The coefficient of the D64 interaction in the low energy expansion of the two-loop four-graviton amplitude in type II superstring theory is known to be proportional to the integral of the Zhang-Kawazumi (ZK) invariant over the moduli space of genus-two Riemann surfaces. We demonstrate that the ZK invariant is an eigenfunction with eigenvalue 5 of the Laplace-Beltrami operator in the interior of moduli space. Exploiting this result, we evaluate the integral of the ZK invariant explicitly, finding agreement with the value of the two-loop D64 interaction predicted on the basis of S-duality and super-symmetry. A review of the current understanding of the D2p4 interactions in type II superstring theory compactified on a torus Td with p ≤ 3 and d ≤ 4 is included.

Keywords

Supersymmetry and Duality String Duality 

References

  1. [1]
    E. D’Hoker and D.H. Phong, Two loop superstrings. I. Main formulas, Phys. Lett. B 529 (2002) 241 [hep-th/0110247] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. D’Hoker and D.H. Phong, Lectures on two loop superstrings, Conf. Proc. C 0208124 (2002) 85 [hep-th/0211111] [INSPIRE].Google Scholar
  3. [3]
    E. D’Hoker, Topics in Two-Loop Superstring Perturbation Theory, arXiv:1403.5494 [INSPIRE].
  4. [4]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Pioline, A Note on nonperturbative R 4 couplings, Phys. Lett. B 431 (1998) 73 [hep-th/9804023] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev. D 59 (1999) 046006 [hep-th/9808061] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    M.B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D 61 (2000) 104010 [hep-th/9910055] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    A. Sinha, The Ĝ 4 λ 16 term in IIB supergravity, JHEP 08 (2002) 017 [hep-th/0207070] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N.A. Obers and B. Pioline, Eisenstein series and string thresholds, Commun. Math. Phys. 209 (2000) 275 [hep-th/9903113] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D 81 (2010) 086008 [arXiv:1001.2535] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    M.B. Green, S.D. Miller, J.G. Russo and P. Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, Commun. Num. Theor. Phys. 4 (2010) 551 [arXiv:1004.0163] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    A. Basu, The D 4 R 4 term in type IIB string theory on T 2 and U-duality, Phys. Rev. D 77 (2008) 106003 [arXiv:0708.2950] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Basu, The D 6 R 4 term in type IIB string theory on T 2 and U-duality, Phys. Rev. D 77 (2008) 106004 [arXiv:0712.1252] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP 01 (2006) 093 [hep-th/0510027] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.B. Green and P. Vanhove, The Low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    E. D’Hoker and D.H. Phong, Two-loop superstrings VI: non-renormalization theorems and the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    E. D’Hoker and D.H. Phong, Two loop superstrings. II. The Chiral measure on moduli space, Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    E. D’Hoker and D.H. Phong, Two loop superstrings. IV: the Cosmological constant and modular forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    E. Witten, Notes On Holomorphic String And Superstring Theory Measures Of Low Genus, arXiv:1306.3621 [INSPIRE].
  24. [24]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. V. Gauge slice independence of the N-point function, Nucl. Phys. B 715 (2005) 91 [hep-th/0501196] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms, Phys. Rev. Lett. 96 (2006) 011602 [hep-th/0509234] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    E. D’Hoker, M. Gutperle and D.H. Phong, Two-loop superstrings and S-duality, Nucl. Phys. B 722 (2005) 81 [hep-th/0503180] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    E. D’Hoker and M.B. Green, Zhang-Kawazumi Invariants and Superstring Amplitudes, arXiv:1308.4597 [INSPIRE].
  28. [28]
    S.W. Zhang, Gross-Schoen Cycles and Dualising Sheaves, Inventiones mathematicae 179 (2008) 1 [arXiv:0812.0371].ADSCrossRefGoogle Scholar
  29. [29]
    N. Kawazumi, Johnsons homomorphisms and the Arakelov Green function, arXiv:0801.4218.
  30. [30]
    R. De Jong, Second variation of Zhangs λ-invariant on the moduli space of curves, arXiv:1002.1618.
  31. [31]
    E. Kiritsis and B. Pioline, On R 4 threshold corrections in IIB string theory and (p, q) string instantons, Nucl. Phys. B 508 (1997) 509 [hep-th/9707018] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP 06 (2010) 075 [arXiv:1002.3805] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP 02 (2008) 020 [arXiv:0801.0322] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    C. Angelantonj, I. Florakis and B. Pioline, A new look at one-loop integrals in string theory, Commun. Num. Theor. Phys. 6 (2012) 159 [arXiv:1110.5318] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Tokyo 28 (1982) 415.MathSciNetGoogle Scholar
  37. [37]
    B. Pioline, Rankin-Selberg methods for closed string amplitudes, arXiv:1401.4265 [INSPIRE].
  38. [38]
    M.B. Green, S.D. Miller and P. Vanhove, SL(2, ℤ)-invariance and D-instanton contributions to the D 6 R 4 interaction, arXiv:1404.2192 [INSPIRE].
  39. [39]
    B. Pioline, R 4 couplings and automorphic unipotent representations, JHEP 03 (2010) 116 [arXiv:1001.3647] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    A. Frizzo, L. Magnea and R. Russo, Scalar field theory limits of bosonic string amplitudes, Nucl. Phys. B 579 (2000) 379 [hep-th/9912183] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    P. Tourkine, Tropical Amplitudes, arXiv:1309.3551 [INSPIRE].
  42. [42]
    M.B. Green, J.G. Russo and P. Vanhove, Modular properties of two-loop maximal supergravity and connections with string theory, JHEP 07 (2008) 126 [arXiv:0807.0389] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    E.P. Verlinde and H.L. Verlinde, Chiral Bosonization, Determinants and the String Partition Function, Nucl. Phys. B 288 (1987) 357 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    R. De Jong, Asymptotic behavior of the Kawazumi-Zhang invariant for degenerating Riemann surfaces, arXiv:1207.2353.
  46. [46]
    R. Wentworth, The Asymptotics of the Arakelov-Greens Function and FaltingsDelta Invariant, Commun. Math. Phys. 137 (1991) 427.ADSCrossRefMATHMathSciNetGoogle Scholar
  47. [47]
    C.L. Siegel, Symplectic Geometry, Am. J. Math. 65 (1943) 1.CrossRefGoogle Scholar
  48. [48]
    H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953) 44.CrossRefMATHMathSciNetGoogle Scholar
  49. [49]
    E. Gottschling, Explizite Bestimmung der Randflhen des Fundamentalbereiches der Modulgruppe zweiten Grades, Math. Ann. 138 (1959) 103.CrossRefMATHMathSciNetGoogle Scholar
  50. [50]
    H. Klingen, Introductory Lectures to Siegel Modular Forms, Cambridge University Press, Cambridge U.K. (1990).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Eric D’Hoker
    • 1
    • 2
  • Michael B. Green
    • 3
  • Boris Pioline
    • 4
    • 5
  • Rodolfo Russo
    • 6
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Department of Applied Mathematics and Theoretical PhysicsCambridgeU.K.
  4. 4.Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589Université Pierre et Marie CurieParis cedex 05France
  5. 5.Theory Division, CERNGeneva 23Switzerland
  6. 6.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations