Advertisement

A unified thermodynamic picture of Hořava-Lifshitz black hole in arbitrary space time

  • Jishnu Suresh
  • R. Tharanath
  • V. C. Kuriakose
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we analyze the complete thermodynamic and phase transition phenomena of a black hole solution in Hořava-Lifshitz gravity in arbitrary space time. Nature of phase transition is studied using geometrothermodynamic and Ehrenfest’s scheme of standard thermodynamics. We analytically check the Ehrenfest’s equations near the critical point, which is the point of divergence in the heat capacity. Our analysis revels that this black hole exhibits a second order phase transition.

Keywords

Models of Quantum Gravity Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].
  3. [3]
    S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Gibbs., The collected works. Volume 1: thermodynamics, Yale University Press, New Haven, U.S.A. (1948).Google Scholar
  5. [5]
    C. Caratheodory, Untersuchungen über die Grundlagen der Thermodynamik, Gesammelte Mathematische Werke Band 2, Munich, Germany (1995).Google Scholar
  6. [6]
    R. Hermann, Geometry physics and systems, Marcel Dekker, New York U.S.A. (1973).zbMATHGoogle Scholar
  7. [7]
    R. Mrugala, Geometrical formulation of equilibrium phenomenological thermodynamics, Rep. Math. Phys. 14 (1978) 419.ADSCrossRefGoogle Scholar
  8. [8]
    R. Mrugala, Submanifolds in the thermodynamical phase space, Rep. Math. Phys. 21 (1985) 197.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    F. Weinhold, Metric geometry of equilibrium thermodynamics I, J. Chem. Phys. 63 (1975) 2479.ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Weinhold, Metric geometry of equilibrium thermodynamics II, J. Chem. Phys. 63 (1975) 2484.ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. Weinhold, Metric geometry of equilibrium thermodynamics III, J. Chem. Phys. 63 (1975) 2488.ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    F. Weinhold, Metric geometry of equilibrium thermodynamics IV, J. Chem. Phys. 63 (1975) 2496.ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    F. Weinhold, Metric geometry of equilibrium thermodynamics V, J. Chem. Phys. 65 (1976) 558.ADSCrossRefGoogle Scholar
  14. [14]
    G. Ruppeiner, Thermodynamics: a Riemannian geometric model, Phys. Rev. A 20 (1979) A1608.ADSCrossRefGoogle Scholar
  15. [15]
    R. Mrugala, On equivalence of two metrics in classical thermodynamics, Physica A 125 (1984) 631.ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    P. Salamon, J.D. Nulton and E. Ihrig, On the relation between entropy and energy versions of thermodynamic length, J. Chem. Phys. 80 (1984) 436.ADSCrossRefGoogle Scholar
  17. [17]
    H. Janyszek, On the geometrical structure of the generalized quantum Gibbs states, Rep. Math. Phys. 24 (1986) 1.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    H. Janyszek and R. Mrugala, Riemannian geometry and the thermodynamics of model magnetic systems, Phys. Rev. A 39 (1989) 6515 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    E.J. Brody, Applications of the Kakutani metric to real space renormalization, Phys. Rev. Lett. 58 (1987) 179 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Brody and N. Rivier, Geometrical aspects of statistical mechanics , Phys. Rev. E 51 (1995) 1006 [INSPIRE].ADSGoogle Scholar
  21. [21]
    D. Brody and A. Ritz, On the symmetry of real space renormalization, Nucl. Phys. B 522 (1998) 588 [hep-th/9709175] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B.P. Dolan, Geometry and thermodynamic fluctuations of the Ising model on a Bethe lattice, Proc. Roy. Soc. London A 454 (1998) 2655 [cond-mat/9706238].CrossRefMathSciNetGoogle Scholar
  23. [23]
    B.P. Dolan, D.A. Johnston and R. Kenna, The information geometry of the one-dimensional Potts model, J. Phys. A 35 (2002) 9025 [cond-mat/0207180] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    W. Janke, D.A. Johnston and R.P. K.C. Malmini, The information geometry of the Ising model on planar random graphs, Phys. Rev. E 66 (2002) 056119 [cond-mat/0207573] [INSPIRE].ADSGoogle Scholar
  25. [25]
    W. Janke, D.A. Johnston and R. Kenna, The information geometry of the spherical model, Phys. Rev. E 67 (2003) 046106 [cond-mat/0210571] [INSPIRE].ADSGoogle Scholar
  26. [26]
    W. Janke, D.A. Johnston and R. Kenna, Information geometry and phase transitions, Physica A 336 (2004) 181 [cond-mat/0401092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    D.A. Johnston, W. Janke and R. Kenna, Information geometry, one, two, three (and four), Acta Phys. Polon. B 34 (2003) 4923 [cond-mat/0308316] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    H. Lü, J. Mei and C.N. Pope, Solutions to Hořava gravity, Phys. Rev. Lett. 103 (2009) 091301 [arXiv:0904.1595] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    J. Sadeghi, K. Jafarzade and B. Pourhassan, Thermodynamical quantities of Hořava-Lifshitz black hole, Int. J. Theor. Phys. 51 (2012) 3891.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    J. Simon, Small black holes versus horizonless solutions in AdS, Phys. Rev. D 81 (2010) 024003 [arXiv:0910.3225] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Kehagias and K. Sfetsos, The black hole and FRW geometries of non-relativistic gravity, Phys. Lett. B 678 (2009) 123 [arXiv:0905.0477] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    H. Nastase, On IR solution in Hořava gravity theories, arXiv:0904.3604 [INSPIRE].
  36. [36]
    E. Kiritsis and G. Kofinas, Hořava-Lifshitz cosmology, Nucl. Phys. B 821 (2009) 467 [arXiv:0904.1334] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    A.J. Padilla, The good, the bad and the ugly . . . of Hořava gravity, J. Phys. Conf. Ser. 259 (2010) 012033 [arXiv:1009.4074] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Calcagni, Cosmology of the Lifshitz universe, JHEP 09 (2009) 112 [arXiv:0904.0829] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M.-i. Park, A test of Hořava gravity: the dark energy, JCAP 01 (2010) 001 [arXiv:0906.4275] [INSPIRE].
  40. [40]
    S.W. Wei, Y.X. Liu and H. Guo, Thermodynamic geometry of black hole in the deformed Hořava-Lifshitz gravity, Europhys. Lett. 99 (2012) 20004.ADSCrossRefGoogle Scholar
  41. [41]
    Y.S. Myung, Entropy of black holes in the deformed Hořava-Lifshitz gravity, Phys. Lett. B 684 (2010) 158 [arXiv:0908.4132] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    Y.S. Myung, Thermodynamics of black holes in the deformed Hořava-Lifshitz gravity, Phys. Lett. B 678 (2009) 127 [arXiv:0905.0957] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    Y.S. Myung and Y.-W. Kim, Thermodynamics of Hořava-Lifshitz black holes, Eur. Phys. J. C 68 (2010) 265 [arXiv:0905.0179] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Varghese and V.C. Kuriakose, Evolution of electromagnetic and Dirac perturbations around a black hole in Hořava gravity, Mod. Phys. Lett. A 26 (2011) 1645 [arXiv:1010.0549] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.-i. Park, The black hole and cosmological solutions in IR modified Hořava gravity, JHEP 09 (2009) 123 [arXiv:0905.4480] [INSPIRE].
  46. [46]
    J. Suresh and V.C. Kuriakose, Area spectrum and thermodynamics of KS black holes in Hořava gravity, Gen. Rel. Grav. 45 (2013) 1877 [arXiv:1307.6438] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    J. Suresh and V.C. Kuriakose, Thermodynamics and quasinormal modes of Park black hole in Hořava gravity, Eur. Phys. J. C 73 (2013) 2613 [arXiv:1310.2011] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Quevedo, Geometrothermodynamics, J. Math. Phys. 48 (2007) 013506 [physics/0604164] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    H. Quevedo, Geometrothermodynamics of black holes, Gen. Rel. Grav. 40 (2008) 971 [arXiv:0704.3102] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    H. Quevedo and A. Vazquez, The geometry of thermodynamics, in Recent developments in gravitation and cosmology, A. Macias et al. eds., AIP, New York U.S.A. (2008).Google Scholar
  51. [51]
    P. Salamon, E. Ihrig and R.S. Berry, A group of coordinate transformations which preserve the metric of Weinhold, J. Math. Phys. 24 (1983) 2515.ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    R. Mrugala, J.D. Nulton, J.C. Schon and P. Salamon, Statistical approach to the geometric structure of thermodynamics, Phys. Rev. A 41 (1990) 3156.ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    R. Banerjee, S.K. Modak and S. Samanta, Glassy phase transition and stability in black holes, Eur. Phys. J. C 70 (2010) 317 [arXiv:1002.0466] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Banerjee, S.K. Modak and S. Samanta, Second order phase transition and thermodynamic geometry in Kerr-AdS black hole, Phys. Rev. D 84 (2011) 064024 [arXiv:1005.4832] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R. Banerjee and D. Roychowdhury, Critical phenomena in Born-Infeld AdS black holes, Phys. Rev. D 85 (2012) 044040 [arXiv:1111.0147] [INSPIRE].ADSGoogle Scholar
  56. [56]
    R. Banerjee, S. Ghosh and D. Roychowdhury, New type of phase transition in Reissner NordstromAdS black hole and its thermodynamic geometry, Phys. Lett. B 696 (2011) 156 [arXiv:1008.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Banerjee and D. Roychowdhury, Thermodynamics of phase transition in higher dimensional AdS black holes, JHEP 11 (2011) 004 [arXiv:1109.2433] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    R. Banerjee, S.K. Modak and D. Roychowdhury, A unified picture of phase transition: from liquid-vapour systems to AdS black holes, JHEP 10 (2012) 125 [arXiv:1106.3877] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Th. M. Nieuwenhuizen, Ehrenfest relations at the glass transition: solution to an old paradox, Phys. Rev. Lett. 79 (1997) 1317.ADSCrossRefGoogle Scholar
  60. [60]
    Th.M. Nieuwenhuizen, Thermodynamic picture of the glassy state, J. Phys. Condens. Matter 12 (2000) 6543.ADSCrossRefGoogle Scholar
  61. [61]
    J. Jäckle, Models of the glass transition, Rep. Prog. Phys. 49 (1986) 171.ADSCrossRefGoogle Scholar
  62. [62]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [INSPIRE].
  66. [66]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and Anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Carlip and S. Vaidya, Phase transitions and critical behavior for charged black holes, Class. Quant. Grav. 20 (2003) 3827 [gr-qc/0306054] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  69. [69]
    R.-G. Cai and A. Wang, Thermodynamics and stability of hyperbolic charged black holes, Phys. Rev. D 70 (2004) 064013 [hep-th/0406057] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    Y.S. Myung, No Hawking-Page phase transition in three dimensions, Phys. Lett. B 624 (2005) 297 [hep-th/0506096] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    B.M.N. Carter and I.P. Neupane, Thermodynamics and stability of higher dimensional rotating (Kerr) AdS black holes, Phys. Rev. D 72 (2005) 043534 [gr-qc/0506103] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    R.-G. Cai, S.P. Kim and B. Wang, Ricci flat black holes and Hawking-Page phase transition in Gauss-Bonnet gravity and dilaton gravity, Phys. Rev. D 76 (2007) 024011 [arXiv:0705.2469] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and phase transitions in the Born-Infeld-Anti-de Sitter black holes, Phys. Rev. D 78 (2008) 084002 [arXiv:0805.0187] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    Y.S. Myung, Phase transition between non-extremal and extremal Reissner-Nordstrom black holes, Mod. Phys. Lett. A 23 (2008) 667 [arXiv:0710.2568] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Phase transitions in charged topological-AdS black holes, JHEP 05 (2008) 107 [arXiv:0801.4921] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  76. [76]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  77. [77]
    H. Liu, H. Lü, M. Luo and K.-N. Shao, Thermodynamical metrics and black hole phase transitions, JHEP 12 (2010) 054 [arXiv:1008.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Sahay, T. Sarkar and G. Sengupta, On the phase structure and thermodynamic geometry of R-charged black holes, JHEP 11 (2010) 125 [arXiv:1009.2236] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    Q.-J. Cao, Y.-X. Chen and K.-N. Shao, Black hole phase transitions in Hořava-Lifshitz gravity, Phys. Rev. D 83 (2011) 064015 [arXiv:1010.5044] [INSPIRE].ADSGoogle Scholar
  80. [80]
    S.-W. Wei, Y.-X. Liu, Y.-Q. Wang and H. Guo, Thermodynamic geometry of black hole in the deformed Hořava-Lifshitz gravity, Europhys. Lett. 99 (2012) 20004 [arXiv:1002.1550] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    B.R. Majhi and D. Roychowdhury, Phase transition and scaling behavior of topological charged black holes in Hořava-Lifshitz gravity, Class. Quant. Grav. 29 (2012) 245012 [arXiv:1205.0146] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  82. [82]
    W. Kim and Y. Kim, Phase transition of quantum corrected Schwarzschild black hole, Phys. Lett. B 718 (2012) 687 [arXiv:1207.5318] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    Y.-D. Tsai, X.N. Wu and Y. Yang, Phase structure of Kerr-AdS black hole, Phys. Rev. D 85 (2012) 044005 [arXiv:1104.0502] [INSPIRE].ADSGoogle Scholar
  84. [84]
    F. Capela and G. Nardini, Hairy black holes in massive gravity: thermodynamics and phase structure, Phys. Rev. D 86 (2012) 024030 [arXiv:1203.4222] [INSPIRE].ADSGoogle Scholar
  85. [85]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  86. [86]
    S.-W. Wei and Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D 87 (2013) 044014 [arXiv:1209.1707] [INSPIRE].ADSGoogle Scholar
  87. [87]
    M. Eune, W. Kim and S.-H. Yi, Hawking-Page phase transition in BTZ black hole revisited, JHEP 03 (2013) 020 [arXiv:1301.0395] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  88. [88]
    P.C.W. Davies, Thermodynamics of black holes, Rep. Prog. Phys. 41 (1978) 1313.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsCochin University of Science and TechnologyKochiIndia

Personalised recommendations