An analysis of the intermediate field theory of T4 tensor model

  • Viet Anh Nguyen
  • Stéphane Dartois
  • Bertrand Eynard
Open Access
Regular Article - Theoretical Physics


In this paper we analyze the multi-matrix model arising from the intermediate field representation of the tensor model with all quartic melonic interactions. We derive the saddle point equation and the Schwinger-Dyson constraints. We then use them to describe the leading and next-to-leading eigenvalues distribution of the matrices.


Matrix Models Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Ambjørn, B. Durhuus and T. Jonsson, Three-dimensional simplicial quantum gravity and generalized matrix models, Mod. Phys. Lett. A 6 (1991) 1133 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Sasakura, Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A 6 (1991) 2613 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2-D Gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    C. Itzykson and J.B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21 (1980) 411 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions, JHEP 11 (2004) 031 [hep-th/0407261] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Eynard and N. Orantin, Algebraic methods in random matrices and enumerative geometry, arXiv:0811.3531 [INSPIRE].
  8. [8]
    R. Gurau, Colored Group Field Theory, Commun. Math. Phys. 304 (2011) 69 [arXiv:0907.2582] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large-N limit: Uncoloring the colored tensor models, Phys. Rev. D 85 (2012) 084037 [arXiv:1202.3637] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large-N limit, Nucl. Phys. B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    W. Kaminski, D. Oriti and J.P. Ryan, Towards a double-scaling limit for tensor models: probing sub-dominant orders, New J. Phys. 16 (2014) 063048 [arXiv:1304.6934] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Dartois, R. Gurau and V. Rivasseau, Double Scaling in Tensor Models with a Quartic Interaction, JHEP 09 (2013) 088 [arXiv:1307.5281] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    R. Gurau and G. Schaeffer, Regular colored graphs of positive degree, arXiv:1307.5279.
  15. [15]
    V. Bonzom, R. Gurau, J.P. Ryan and A. Tanasa, The double scaling limit of random tensor models, JHEP 09 (2014) 051 [arXiv:1404.7517] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    V. Bonzom, R. Gurau and V. Rivasseau, The Ising Model on Random Lattices in Arbitrary Dimensions, Phys. Lett. B 711 (2012) 88 [arXiv:1108.6269] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    V. Bonzom, R. Gurau and M. Smerlak, Universality in p-spin glasses with correlated disorder, J. Stat. Mech. Theor. Exp. 2013 (2013) L02003 [arXiv:1206.5539].CrossRefMathSciNetGoogle Scholar
  18. [18]
    R. Gurau, The 1/N Expansion of Tensor Models Beyond Perturbation Theory, Commun. Math. Phys. 330 (2014) 973 [arXiv:1304.2666] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    S. Dartois, A Givental-like Formula and Bilinear Identities for Tensor Models, arXiv:1409.5621 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Viet Anh Nguyen
    • 1
    • 3
    • 5
  • Stéphane Dartois
    • 1
    • 2
  • Bertrand Eynard
    • 3
    • 4
  1. 1.Laboratoire de Physique Théorique, CNRS UMR 8627Orsay CedexFrance
  2. 2.LIPN, Institut Galilée, CNRS UMRVilletaneuseFrance
  3. 3.IPhT, Institut de Physique Théorique, CEA/DSM/IPhT, CEA/SaclayGif-sur-Yvette CedexFrance
  4. 4.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada
  5. 5.LAREMA, CNRS UMR 6093, Université d’Anger, Département de mathématiques, Faculté des SciencesAngersFrance

Personalised recommendations