Journal of High Energy Physics

, 2014:164 | Cite as

First look at the physics case of TLEP

  • The TLEP Design Study Working Group
  • M. Bicer
  • H. Duran Yildiz
  • I. Yildiz
  • G. Coignet
  • M. Delmastro
  • T. Alexopoulos
  • C Grojean
  • S. Antusch
  • T. Sen
  • H.-J. He
  • K. Potamianos
  • S. Haug
  • A. Moreno
  • A. Heister
  • V. Sanz
  • G. Gomez-Ceballos
  • M. Klute
  • M. Zanetti
  • L.-T. Wang
  • M. Dam
  • C. Boehm
  • N. Glover
  • F. Krauss
  • A. Lenz
  • M. Syphers
  • C. Leonidopoulos
  • V. Ciulli
  • P. Lenzi
  • G. Sguazzoni
  • M. Antonelli
  • M. Boscolo
  • U. Dosselli
  • O. Frasciello
  • C. Milardi
  • G. Venanzoni
  • M. Zobov
  • J. van der Bij
  • M. de Gruttola
  • D.-W. Kim
  • M. Bachtis
  • A. Butterworth
  • C. Bernet
  • C. Botta
  • F. Carminati
  • A. David
  • L. Deniau
  • D. d’Enterria
  • G. Ganis
  • B. Goddard
  • G. Giudice
  • P. Janot
  • J. M. Jowett
  • C. Lourenço
  • L. Malgeri
  • E. Meschi
  • F. Moortgat
  • P. Musella
  • J. A. Osborne
  • L. Perrozzi
  • M. Pierini
  • L. Rinolfi
  • A. de Roeck
  • J. Rojo
  • G. Roy
  • A. Sciabà
  • A. Valassi
  • C. S. Waaijer
  • J. Wenninger
  • H. Woehri
  • F. Zimmermann
  • A. Blondel
  • M. Koratzinos
  • P. Mermod
  • Y. Onel
  • R. Talman
  • E. Castaneda Miranda
  • E. Bulyak
  • D. Porsuk
  • D. Kovalskyi
  • S. Padhi
  • P. Faccioli
  • J. R. Ellis
  • M. Campanelli
  • Y. Bai
  • M. Chamizo
  • R. B. Appleby
  • H. Owen
  • H. Maury Cuna
  • C. Gracios
  • G. A. Munoz-Hernandez
  • L. Trentadue
  • E. Torrente-Lujan
  • S. Wang
  • D. Bertsche
  • A. Gramolin
  • V. Telnov
  • M. Kado
  • P. Petroff
  • P. Azzi
  • O. Nicrosini
  • F. Piccinini
  • G. Montagna
  • F. Kapusta
  • S. Laplace
  • W. da Silva
  • N. Gizani
  • N. Craig
  • T. Han
  • C. Luci
  • B. Mele
  • L. Silvestrini
  • M. Ciuchini
  • R. Cakir
  • R. Aleksan
  • F. Couderc
  • S. Ganjour
  • E. Lançon
  • E. Locci
  • P. Schwemling
  • M. Spiro
  • C. Tanguy
  • J. Zinn-Justin
  • S. Moretti
  • M. Kikuchi
  • H. Koiso
  • K. Ohmi
  • K. Oide
  • G. Pauletta
  • R. Ruiz de Austri
  • M. Gouzevitch
  • S. Chattopadhyay
Open Access
Article

Abstract

The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the \( \mathrm{t}\overline{\mathrm{t}} \) threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.

Keywords

e+-e- Experiments 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  4. [4]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H. Baer et al., The International Linear Collider technical design reportVolume 2: physics, arXiv:1306.6352 [INSPIRE].
  8. [8]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001.ADSGoogle Scholar
  9. [9]
    M. Koratzinos et al., TLEP: a high-performance circular e + e collider to study the Higgs boson, arXiv:1305.6498 [INSPIRE].
  10. [10]
    J.A. Osborne and C.S. Waaijer, Contribution to the open symposium of the European Strategy Preparatory Group: pre-feasability assessment for an 80 km tunnel project at CERN, see online (2012).
  11. [11]
    A. Blonde et al., Report of the ICFA beam dynamics workshopaccelerators for a Higgs factory: linear vs. circular(HF2012), arXiv:1302.3318 [INSPIRE].
  12. [12]
    CERN-Council, The European strategy for particle physics, http://council.web.cern.ch/council/en/EuropeanStrategy/ESParticlePhysics.html.
  13. [13]
    CERN, Medium-term plan for the period 2014-2018 and draft budget of the organization for the sixtieth financial year 2014, CERN/SPC/1012 (2013).
  14. [14]
    A. Blondel and F. Zimmermann, A high luminosity e + e collider in the LHC tunnel to study the Higgs Boson, arXiv:1112.2518 [INSPIRE].
  15. [15]
    R. Aßmann and K. Cornelis, The beam-beam interaction in the presence of strong radiation damping, CERN-SL-2000-046-OP (2000).
  16. [16]
    C. Adolphsen et al., The International Linear Collider technical design reportVolume 3.I: accelerator R&D in the technical design phase, arXiv:1306.6353 [INSPIRE].
  17. [17]
    C. Adolphsen, M. Barone, B. Barish, K. Buesser, P. Burrows et al., The International Linear Collider technical design reportVolume 3.II: accelerator baseline design, arXiv:1306.6328 [INSPIRE].
  18. [18]
    M. Aicheler et al., A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report, CERN-2012-007 (2012), see online.
  19. [19]
    M. Harrison, M. Ross and N. Walker, Luminosity upgrades for ILC, arXiv:1308.3726 [INSPIRE].
  20. [20]
    V. Telnov, Limitation on the luminosity of e + e storage rings due to beamstrahlung, PoS (IHEP-LHC) 016 [arXiv:1307.3915] [INSPIRE].
  21. [21]
    V.I. Telnov, Problems of charge compensation in a ring e + e Higgs factory, talk given at the 5th TLEP workshop, July 25-26, FNAL, U.S.A. (2013).
  22. [22]
    K. Yokoya, Scaling of high-energy e + e ring colliders, at KEK Accelerator Seminar (2012).
  23. [23]
    V. Telnov, Restriction on the energy and luminosity of e + e storage rings due to beamstrahlung, Phys. Rev. Lett. 110 (2013) 114801 [arXiv:1203.6563] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Aßmann et al., Calibration of center-of-mass energies at LEP-1 for precise measurements of Z properties, Eur. Phys. J. C 6 (1999) 187 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    LEP Energy Working Group collaboration, R. Aßmann et al., Calibration of centre-of-mass energies at LEP 2 for a precise measurement of the W boson mass, Eur. Phys. J. C 39 (2005) 253 [hep-ex/0410026] [INSPIRE].ADSGoogle Scholar
  26. [26]
    SLD collaboration, K. Abe et al., A high precision measurement of the left-right Z boson cross-section asymmetry, Phys. Rev. Lett. 84 (2000) 5945 [hep-ex/0004026] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    LHeC Study Group collaboration, J. Abelleira Fernandez et al., A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Blondel and J.M. Jowett, Dedicated wigglers for polarization, CERN-LEP-NOTE-606 (1988).
  29. [29]
    R. Aßmann et al., Experiments on beam-beam depolarization at LEP, in the proceedings of the 1995 Particle Accelerator Conference, May 1-5, Dallas, Texas (1995).Google Scholar
  30. [30]
    G. Hoffstaetter, M. Vogt and F. Willeke, Experience with HERA beams, see online (2003).
  31. [31]
    A. Blondel, A scheme to measure the polarization asymmetry at the Z pole in LEP, Phys. Lett. B 202 (1988) 145 [Erratum ibid. 208 (1988) 531] [INSPIRE].
  32. [32]
    U. Wienans, Is polarization possible in TLEP?, talk given ath the 4th TLEP workshop, April 4-5, CERN, Switzerland (2013).Google Scholar
  33. [33]
    L. Arnaudon et al., Measurement of LEP beam energy by resonant spin depolarization, Phys. Lett. B 284 (1992) 431.ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    A. Hinze and K. Monig, Measuring the beam energy with radiative return events, eConf C 050318 (2005) 1109 [physics/0506115] [INSPIRE].
  35. [35]
    T. Behnke et al., The International Linear Collider technical design reportVolume 4: detectors, arXiv:1306.6329 [INSPIRE].
  36. [36]
    P. Azzi et al., Prospective studies for LEP3 with the CMS detector, arXiv:1208.1662 [INSPIRE].
  37. [37]
    LHCb collaboration, Framework TDR for the LHCb upgrade: technical design report, CERN-LHCC-2012-007 (2012).
  38. [38]
    J. Osborne, private communnication (2013).Google Scholar
  39. [39]
    P. Janot and G. Ganis, The HZHA generator, in Physics at LEP2, G. Altarelli, T. Sjøstrand and F. Zwirner eds., CERN Report 96/01 (1996).Google Scholar
  40. [40]
    T. Behnke, J.E. Brau, B. Foster, J. Fuster, M. Harrison et al., The International Linear Collider technical design reportVolume 1: executive summary, arXiv:1306.6327 [INSPIRE].
  41. [41]
    N. Craig, C. Englert and M. McCullough, A new probe of naturalness, Phys. Rev. Lett. 111 (2013) 121803 [arXiv:1305.5251] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C.F. Dürig, Determination of the Higgs decay width at ILC (Masterarbeit in Physik), Tech. Rep. (2012).
  43. [43]
    M.E. Peskin, Comparison of LHC and ILC capabilities for Higgs boson coupling measurements, arXiv:1207.2516 [INSPIRE].
  44. [44]
    S.P. Martin, Shift in the LHC Higgs diphoton mass peak from interference with background, Phys. Rev. D 86 (2012) 073016 [arXiv:1208.1533] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L.J. Dixon and Y. Li, Bounding the Higgs boson width through interferometry, Phys. Rev. Lett. 111 (2013) 111802 [arXiv:1305.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].ADSGoogle Scholar
  47. [47]
    V. Barger, M. Ishida and W.Y. Keung, Total width of 125 GeV Higgs boson, Phys. Rev. Lett. 108 (2012) 261801 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the snowmass process, arXiv:1307.7135 [INSPIRE].
  49. [49]
    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS, arXiv:1307.7292 [INSPIRE].
  50. [50]
    O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B sμ + μ and XENON100 data, Eur. Phys. J. C 72 (2012) 2243.ADSCrossRefGoogle Scholar
  51. [51]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  52. [52]
    B. Pietrzyk, LEP asymmetries and fits of the standard model, hep-ex/9406001 [INSPIRE].
  53. [53]
    J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001.ADSGoogle Scholar
  54. [54]
    ALEPH, DELPHI, L3, OPAL, and LEP Electroweak Working Group, Precision Electroweak measurements on the Z resonance, Phys. Rep. 427 (2006) 257.ADSGoogle Scholar
  55. [55]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak collaboration, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C. Jarlskog, Neutrino counting at the Z-peak and right-handed neutrinos, Phys. Lett. B 241 (1990) 579.ADSCrossRefGoogle Scholar
  58. [58]
    G. Barbiellini et al., Neutrino counting, http://cds.cern.ch/search?sysno=000112318CER (1989).
  59. [59]
    OPAL collaboration, G. Abbiendi et al., Photonic events with missing energy in e + e collisions at \( \sqrt{s} \) = 189 GeV, Eur. Phys. J. C 18 (2000) 253 [hep-ex/0005002] [INSPIRE].ADSGoogle Scholar
  60. [60]
    ALEPH collaboration, A. Heister et al., Single photon and multiphoton production in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Eur. Phys. J. C 28 (2003) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    L3 collaboration, P. Achard et al., Single photon and multiphoton events with missing energy in e + e collisions at LEP, Phys. Lett. B 587 (2004) 16 [hep-ex/0402002] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s} \) = 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P. Baikov, K. Chetyrkin and J. Kühn, Order \( \alpha_s^4 \) QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002.ADSCrossRefGoogle Scholar
  64. [64]
    P.A. Baikov et al., Complete \( O\left( {\alpha_s^4} \right) \) QCD corrections to hadronic Z decays, Phys. Rev. Lett. 108 (2012) 222003.ADSCrossRefGoogle Scholar
  65. [65]
    S. Bethke, α s at Zinnowitz 2004, Nucl. Phys. Proc. Supp. B 135 (2004) 345.ADSCrossRefGoogle Scholar
  66. [66]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].ADSGoogle Scholar
  69. [69]
    C. Giunti, C. Kim and U. Lee, Running coupling constants and grand unification models, Mod. Phys. Lett. A 6 (1991) 1745 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Hoang et al., Threshold \( t\overline{t} \) cross section at next-to-next-to-leading logarithmic order, Phys. Rev. D 65 (2001) 014014 [hep-ph/0107144] [INSPIRE].ADSGoogle Scholar
  71. [71]
    K. Seidel, F. Simon, M. Tesar and S. Poss, Top quark mass measurements at and above threshold at CLIC, Eur. Phys. J. C 73 (2013) 2530 [arXiv:1303.3758] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Martinez and R. Miquel, Multiparameter fits to the \( t\overline{t} \) threshold observables at a future e + e linear collider, Eur. Phys. J. C 27 (2003) 49 [hep-ph/0207315] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Ferroglia and A. Sirlin, Comparison of the standard theory predictions of m W and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) with their experimental values, Phys. Rev. D 87 (2013) 037501.ADSGoogle Scholar
  74. [74]
    S. Heinemeyer and G. Weiglein, Top, GigaZ, MegaW, arXiv:1007.5232 [INSPIRE].
  75. [75]
    F. Jegerlehner, The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. Proc. Suppl. 181-182 (2008) 135 [arXiv:0807.4206] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies collaboration, S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    D. Babusci et al., Proposal for taking data with the KLOE-2 detector at the DAΦNE collider upgraded in energy, arXiv:1007.5219 [INSPIRE].
  78. [78]
    D. Alesini et al., IRIDE white book, an interdisciplinary research infrastructure based on dual electron linacs&lasers, arXiv:1307.7967 [INSPIRE].
  79. [79]
    M. Baak et al., The Electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205.ADSCrossRefGoogle Scholar
  80. [80]
    G. Petrucciani, The ttH coupling measurement at the HL-LHC, talk given at the 6th TLEP Workshop, October 16-18, Fermilab, U.S.A. (2013).Google Scholar
  81. [81]
    ATLAS collaboration, Physics at a high-luminosity lhc with ATLAS, ATL-PHYS-PUB-2012-004 (2012).
  82. [82]
    CMS collaboration, CMS at the high-energy frontier, CMS-2012-006 (2012).
  83. [83]
    M.L. Mangano and J. Rojo, Cross section ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity, JHEP 08 (2012) 010 [arXiv:1206.3557] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Dawson et al., The Snowmass Higgs Working group report, in preparation.
  85. [85]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].ADSGoogle Scholar
  86. [86]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2014

Authors and Affiliations

  • The TLEP Design Study Working Group
  • M. Bicer
    • 1
  • H. Duran Yildiz
    • 2
  • I. Yildiz
    • 3
  • G. Coignet
    • 4
  • M. Delmastro
    • 4
  • T. Alexopoulos
    • 5
  • C Grojean
    • 6
  • S. Antusch
    • 7
  • T. Sen
    • 8
  • H.-J. He
    • 9
  • K. Potamianos
    • 10
  • S. Haug
    • 11
  • A. Moreno
    • 12
  • A. Heister
    • 13
  • V. Sanz
    • 14
  • G. Gomez-Ceballos
    • 15
  • M. Klute
    • 15
  • M. Zanetti
    • 15
  • L.-T. Wang
    • 16
  • M. Dam
    • 17
  • C. Boehm
    • 18
  • N. Glover
    • 18
  • F. Krauss
    • 18
  • A. Lenz
    • 18
  • M. Syphers
    • 19
  • C. Leonidopoulos
    • 20
  • V. Ciulli
    • 21
  • P. Lenzi
    • 21
  • G. Sguazzoni
    • 21
  • M. Antonelli
    • 22
  • M. Boscolo
    • 22
  • U. Dosselli
    • 22
  • O. Frasciello
    • 22
  • C. Milardi
    • 22
  • G. Venanzoni
    • 22
  • M. Zobov
    • 22
  • J. van der Bij
    • 23
  • M. de Gruttola
    • 24
  • D.-W. Kim
    • 25
  • M. Bachtis
    • 26
  • A. Butterworth
    • 26
  • C. Bernet
    • 26
  • C. Botta
    • 26
  • F. Carminati
    • 26
  • A. David
    • 26
  • L. Deniau
    • 26
  • D. d’Enterria
    • 26
  • G. Ganis
    • 26
  • B. Goddard
    • 26
  • G. Giudice
    • 26
  • P. Janot
    • 26
  • J. M. Jowett
    • 26
  • C. Lourenço
    • 26
  • L. Malgeri
    • 26
  • E. Meschi
    • 26
  • F. Moortgat
    • 26
  • P. Musella
    • 26
  • J. A. Osborne
    • 26
  • L. Perrozzi
    • 26
  • M. Pierini
    • 26
  • L. Rinolfi
    • 26
  • A. de Roeck
    • 26
  • J. Rojo
    • 26
  • G. Roy
    • 26
  • A. Sciabà
    • 26
  • A. Valassi
    • 26
  • C. S. Waaijer
    • 26
  • J. Wenninger
    • 26
  • H. Woehri
    • 26
  • F. Zimmermann
    • 26
  • A. Blondel
    • 27
  • M. Koratzinos
    • 27
  • P. Mermod
    • 27
  • Y. Onel
    • 28
  • R. Talman
    • 29
  • E. Castaneda Miranda
    • 30
  • E. Bulyak
    • 31
  • D. Porsuk
    • 32
  • D. Kovalskyi
    • 33
  • S. Padhi
    • 33
  • P. Faccioli
    • 34
  • J. R. Ellis
    • 35
  • M. Campanelli
    • 36
  • Y. Bai
    • 37
  • M. Chamizo
    • 38
  • R. B. Appleby
    • 39
  • H. Owen
    • 39
  • H. Maury Cuna
    • 40
  • C. Gracios
    • 41
  • G. A. Munoz-Hernandez
    • 41
  • L. Trentadue
    • 42
  • E. Torrente-Lujan
    • 43
  • S. Wang
    • 44
  • D. Bertsche
    • 45
  • A. Gramolin
    • 46
  • V. Telnov
    • 46
  • M. Kado
    • 47
  • P. Petroff
    • 47
  • P. Azzi
    • 48
  • O. Nicrosini
    • 49
  • F. Piccinini
    • 49
  • G. Montagna
    • 50
  • F. Kapusta
    • 51
  • S. Laplace
    • 51
  • W. da Silva
    • 51
  • N. Gizani
    • 52
  • N. Craig
    • 53
  • T. Han
    • 54
  • C. Luci
    • 55
  • B. Mele
    • 55
  • L. Silvestrini
    • 55
  • M. Ciuchini
    • 56
  • R. Cakir
    • 57
  • R. Aleksan
    • 58
  • F. Couderc
    • 58
  • S. Ganjour
    • 58
  • E. Lançon
    • 58
  • E. Locci
    • 58
  • P. Schwemling
    • 58
  • M. Spiro
    • 58
  • C. Tanguy
    • 58
  • J. Zinn-Justin
    • 58
  • S. Moretti
    • 59
  • M. Kikuchi
    • 60
  • H. Koiso
    • 60
  • K. Ohmi
    • 60
  • K. Oide
    • 60
  • G. Pauletta
    • 61
  • R. Ruiz de Austri
    • 62
  • M. Gouzevitch
    • 63
  • S. Chattopadhyay
    • 64
  1. 1.Faculty of ScienceAnkara UniversityAnkaraTurkey
  2. 2.IAT, Ankara UniversityAnkaraTurkey
  3. 3.Middle East Technical UniversityAnkaraTurkey
  4. 4.Laboratoire d’Annecy-Le-Vieux de Physique des Particules, IN2P3/CNRSAnnecy-Le-VieuxFrance
  5. 5.National Technical University of AthensAthensGreece
  6. 6.Institucio Catalana de Recerca i EstudisBarcelonaSpain
  7. 7.Universität BaselBaselSwitzerland
  8. 8.FermilabBataviaU.S.A.
  9. 9.Tsinghua UniversityBeijingChina
  10. 10.Lawrence Berkeley National Laboratory (LBNL)BerkeleyU.S.A.
  11. 11.AEC-LHEP, University of BernBernSwitzerland
  12. 12.Universidad Antonio NarinoBogotaColombia
  13. 13.Boston UniversityBostonU.S.A.
  14. 14.University of SussexBrightonU.K.
  15. 15.MITCambridgeU.S.A.
  16. 16.University of ChicagoChicagoU.S.A.
  17. 17.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  18. 18.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  19. 19.Michigan State UniversityEast LansingU.S.A.
  20. 20.University of EdinburghEdinburghU.K.
  21. 21.INFNSezione di FirenzeItaly
  22. 22.INFN, Laboratori Nazionali di FrascatiFrascatiItaly
  23. 23.Albert-Ludwigs UniversitätFreiburgGermany
  24. 24.University of FloridaGainesvilleU.S.A.
  25. 25.Gangneung-Wonju National UniversityGangneungSouth Korea
  26. 26.CERNGenevaSwitzerland
  27. 27.University of GenevaGenevaSwitzerland
  28. 28.University of IowaIowa CityU.S.A.
  29. 29.Cornell UniversityIthacaU.S.A.
  30. 30.University of JohannesburgJohannesburgSouth Africa
  31. 31.NSC KIPTKharkovUkraine
  32. 32.Dumlupinar UniversityKutahyaTurkey
  33. 33.University of California San DiegoLa JollaU.S.A.
  34. 34.LIPLisbonPortugal
  35. 35.King’s CollegeLondonU.K.
  36. 36.University College LondonLondonU.K.
  37. 37.University of WisconsinMadisonU.S.A.
  38. 38.CIEMATMadridSpain
  39. 39.University of Manchester, Cockcroft InstituteManchesterU.K.
  40. 40.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéridaMéxico
  41. 41.Istituto Tecnológico de PueblaPueblaMéxico
  42. 42.INFNSezione di Milano BicoccaItaly
  43. 43.IFT, University of MurciaMurciaSpain
  44. 44.Thomas Jefferson National Accelerator FacilityNewport NewsU.S.A.
  45. 45.University of Oklahoma, Department of Physics and AstronomyNormanU.S.A.
  46. 46.Budker Institute of Nuclear Physics and Novosibirsk State UniversityNovosibirskRussia
  47. 47.Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRSOrsayFrance
  48. 48.INFNSezione di PadovaItaly
  49. 49.INFNSezione di PaviaItaly
  50. 50.Università di PaviaPaviaItaly
  51. 51.Laboratoire de Physique Nucléaire et des Hautes Energies, IN2P3/CNRSParisFrance
  52. 52.Hellenic Open UniversityPatraGreece
  53. 53.Rutgers UniversityPiscatawayU.S.A.
  54. 54.University of PittsburghPittsburghU.S.A.
  55. 55.INFN, Università degli Studi La SapienzaRomaItaly
  56. 56.INFN, Sezione di Roma TreRomaItaly
  57. 57.Recep Tayyip Erdogan UniversityRizeTurkey
  58. 58.CEA, IRFUSaclayFrance
  59. 59.University of SouthamptonSouthamptonU.K.
  60. 60.KEKTsukubaJapan
  61. 61.Università di UdineUdineItaly
  62. 62.Instituto de Fisica Corpuscular (IFIC)ValenciaSpain
  63. 63.Institut de Physique Nucléaire de Lyon, IN2P3/CNRSVilleurbanneFrance
  64. 64.Cockcroft InstituteWarringtonU.K.

Personalised recommendations