Journal of High Energy Physics

, 2014:153

Hairy planar black holes in higher dimensions

  • Andrés Aceña
  • Andrés Anabalón
  • Dumitru Astefanesei
  • Robert Mann
Open Access
Article

Abstract

We construct exact hairy planar black holes in D-dimensional AdS gravity. These solutions are regular except at the singularity and have stress-energy that satisfies the null energy condition. We present a detailed analysis of their thermodynamical properties and show that the first law is satisfied. We also discuss these solutions in the context of AdS/CFT duality and construct the associated c-function.

Keywords

Classical Theories of Gravity Black Holes 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  4. [4]
    A. Acena, A. Anabalon and D. Astefanesei, Exact hairy black brane solutions in AdS 5 and holographic RG flows, Phys. Rev. 87 (2013) 124033 [arXiv:1211.6126] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MATHMathSciNetGoogle Scholar
  13. [13]
    H. Elvang, D.Z. Freedman and H. Liu, From fake supergravity to superstars, JHEP 12 (2007) 023 [hep-th/0703201] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Goldstein, R.P. Jena, G. Mandal and S.P. Trivedi, A c-function for non-supersymmetric attractors, JHEP 02 (2006) 053 [hep-th/0512138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric AdS attractors, JHEP 04 (2008) 074 [arXiv:0711.0036] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  16. [16]
    X.-H. Feng, H. Lü and Q. Wen, Scalar hairy black holes in general dimensions, arXiv:1312.5374 [INSPIRE].
  17. [17]
    H. Boonstra, K. Skenderis and P. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    K. Skenderis and P. Townsend, Pseudo-supersymmetry and the domain-wall/cosmology correspondence, J. Phys. A 40 (2007) 6733 [hep-th/0610253] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/cosmology correspondence in AdS/dS supergravity, JHEP 08 (2007) 036 [arXiv:0704.3918] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Anabalon, Exact black holes and universality in the backreaction of non-linear σ-models with a potential in (A)dS 4, JHEP 06 (2012) 127 [arXiv:1204.2720] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    A. Ashtekar and A. Magnon, Asymptotically Anti-de Sitter space-times, Class. Quant. Grav. 1 (1984) L39 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of Anti-de Sitter gravity coupled to scalar fields, Annals Phys. 322 (2007) 824 [hep-th/0603185] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    A. Anabalon, D. Astefanesei et al., to appear.Google Scholar
  26. [26]
    W. Chen, H. Lü and C. Pope, Mass of rotating black holes in gauged supergravities, Phys. Rev. D 73 (2006) 104036 [hep-th/0510081] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    O. DeWolfe, D. Freedman, S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    D. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Celi, A. Ceresole, G. Dall’Agata, A. Van Proeyen and M. Zagermann, On the fakeness of fake supergravity, Phys. Rev. D 71 (2005) 045009 [hep-th/0410126] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Lü, Charged dilatonic AdS black holes and magnetic AdS D−2 × R 2 vacua, JHEP 09 (2013) 112 [arXiv:1306.2386] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Tarrío and O. Varela, Electric/magnetic duality and RG flows in AdS4/CFT3, JHEP 01 (2014) 071 [arXiv:1311.2933] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    A. Anabalon and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity, arXiv:1311.7459 [INSPIRE].
  35. [35]
    S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    R.V. Buniy and S.D. Hsu, Instabilities and the null energy condition, Phys. Lett. B 632 (2006) 543 [hep-th/0502203] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    M. Kleban, J. McGreevy and S.D. Thomas, Implications of bulk causality for holography in AdS, JHEP 03 (2004) 006 [hep-th/0112229] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    A. Anabalon, D. Astefanesei and R. Mann, Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP 10 (2013) 184 [arXiv:1308.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Anabalón and D. Astefanesei, On attractor mechanism of AdS 4 black holes, Phys. Lett. B 727 (2013) 568 [arXiv:1309.5863] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Astefanesei, N. Banerjee and S. Dutta, Moduli and electromagnetic black brane holography, JHEP 02 (2011) 021 [arXiv:1008.3852] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    A. Anabalon, D. Astefanesei et al., work in progress.Google Scholar
  43. [43]
    V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    D. Astefanesei and E. Radu, Boson stars with negative cosmological constant, Nucl. Phys. B 665 (2003) 594 [gr-qc/0309131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    D. Astefanesei and E. Radu, Rotating boson stars in (2 + 1)-dimenmsions, Phys. Lett. B 587 (2004) 7 [gr-qc/0310135] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Andrés Aceña
    • 1
  • Andrés Anabalón
    • 2
    • 3
  • Dumitru Astefanesei
    • 4
  • Robert Mann
    • 5
    • 6
  1. 1.Instituto de Ciencias BásicasUniversidad Nacional de CuyoMendozaArgentina
  2. 2.Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
  3. 3.Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de LyonLyon Cedex 07France
  4. 4.Instituto de Física, Pontificia Universidad Católica de ValparaısoValparaísoChile
  5. 5.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  6. 6.Perimeter InstituteWaterlooCanada

Personalised recommendations