Advertisement

Journal of High Energy Physics

, 2014:127 | Cite as

Rotating black holes in 4d gauged supergravity

  • Alessandra Gnecchi
  • Kiril Hristov
  • Dietmar Klemm
  • Chiara ToldoEmail author
  • Owen Vaughan
Open Access
Article

Abstract

We present new results towards the construction of the most general black hole solutions in four-dimensional Fayet-Iliopoulos gauged supergravities. In these theories black holes can be asymptotically AdS and have arbitrary mass, angular momentum, electric and magnetic charges and NUT charge. Furthermore, a wide range of horizon topologies is allowed (compact and noncompact) and the complex scalar fields have a non-trivial radial and angular profile. We construct a large class of solutions in the simplest single scalar model with prepotential F = −iX 0 X 1 and discuss their thermodynamics. Moreover, various approaches and calculational tools for facing this problem with more general prepotentials are presented.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].
  3. [3]
    S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    K. Hristov, C. Toldo and S. Vandoren, Phase transitions of magnetic AdS 4 black holes with scalar hair, Phys. Rev. D 88 (2013) 026019 [arXiv:1304.5187] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997)002 [hep-th/9711053] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009)343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  16. [16]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    S. Sachdev, Condensed Matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273 [arXiv:1002.2947] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Barisch, G. Lopes Cardoso, M. Haack, S. Nampuri and N.A. Obers, Nernst branes in gauged supergravity, JHEP 11 (2011) 090 [arXiv:1108.0296] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. Anninos, T. Anous, F. Denef and L. Peeters, Holographic Vitrification, arXiv:1309.0146 [INSPIRE].
  20. [20]
    L. Vanzo, Black holes with unusual topology, Phys. Rev. D 56 (1997) 6475 [gr-qc/9705004] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999)237 [hep-th/9901149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.D. Chow, Single-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 032001 [arXiv:1011.2202] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D.D. Chow, Two-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 175004 [arXiv:1012.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999)434 [hep-th/9808097] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    N. Alonso-Alberca, P. Meessen and T. Ortín, Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS space-times, Class. Quant. Grav. 17 (2000) 2783 [hep-th/0003071] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    H. Lü, Y. Pang and C. Pope, AdS Dyonic Black Hole and its Thermodynamics, JHEP 11 (2013)033 [arXiv:1307.6243] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010)085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    D. Klemm, Rotating BPS black holes in matter-coupled AdS 4 supergravity, JHEP 07 (2011) 019 [arXiv:1103.4699] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    N. Halmagyi, BPS Black Hole Horizons in N = 2 Gauged Supergravity, arXiv:1308.1439 [INSPIRE].
  34. [34]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    A. Gnecchi and C. Toldo, On the non-BPS first order flow in N = 2 U(1)-gauged Supergravity, JHEP 03 (2013) 088 [arXiv:1211.1966] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions, JHEP 07 (2012) 163 [arXiv:1112.2876] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einsteins equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].zbMATHGoogle Scholar
  40. [40]
    J.F. Plebanski, A class of solutions of Einstein-Maxwell equations, Annals Phys. 90 (1975) 196.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    E. Lozano-Tellechea and T. Ortín, The general, duality invariant family of nonBPS black hole solutions of N = 4, D = 4 supergravity, Nucl. Phys. B 569 (2000) 435 [hep-th/9910020] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D.D.K. Chow and G. Compère, Seed for general rotating non-extremal black holes of N = 8 supergravity, Class. Quant. Grav. 31 (2014) 022001 [arXiv:1310.1925] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Hristov, S. Katmadas and V. Pozzoli, Ungauging black holes and hidden supercharges, JHEP 01 (2013) 110 [arXiv:1211.0035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    D.D.K. Chow and G. Compère, Dyonic AdS black holes in maximal gauged supergravity, arXiv:1311.1204 [INSPIRE].
  45. [45]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997)111 [hep-th/9605032] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    D. Klemm and E. Zorzan, The timelike half-supersymmetric backgrounds of N = 2, D = 4 supergravity with Fayet-Iliopoulos gauging, Phys. Rev. D 82 (2010) 045012 [arXiv:1003.2974] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Colleoni and D. Klemm, Nut-charged black holes in matter-coupled N = 2, D = 4 gauged supergravity, Phys. Rev. D 85 (2012) 126003 [arXiv:1203.6179] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006)058 [hep-th/0606244] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995)379 [hep-th/9505038] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    D. Klemm, V. Moretti and L. Vanzo, Rotating topological black holes, Phys. Rev. D 57 (1998)6127 [Erratum ibid. D 60 (1999) 109902] [gr-qc/9710123] [INSPIRE].
  51. [51]
    A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, Class. Quant. Grav. 1 (1984) L39 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    R.P. Geroch, Limits of spacetimes, Commun. Math. Phys. 13 (1969) 180 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    P. Meessen and T. Ortín, Ultracold spherical horizons in gauged N = 1, D = 4 supergravity, Phys. Lett. B 693 (2010) 358 [arXiv:1007.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P.H. Ginsparg and M.J. Perry, Semiclassical Perdurance of de Sitter Space, Nucl. Phys. B 222 (1983)245 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    V. Cardoso, O.J. Dias and J.P. Lemos, Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions, Phys. Rev. D 70 (2004) 024002 [hep-th/0401192] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    M.M. Caldarelli, R. Emparan and M.J. Rodríguez, Black Rings in (Anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.M. Caldarelli et al., Vorticity in holographic fluids, PoS(CORFU2011)076 [arXiv:1206.4351] [INSPIRE].
  60. [60]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Alessandra Gnecchi
    • 1
  • Kiril Hristov
    • 2
  • Dietmar Klemm
    • 3
  • Chiara Toldo
    • 1
    Email author
  • Owen Vaughan
    • 4
  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Dipartimento di FisicaUniversità di Milano-Bicocca, and INFN, sezione di Milano-BicoccaMilanoItaly
  3. 3.Dipartimento di FisicaUniversità di Milano, and INFN, sezione di MilanoMilanoItaly
  4. 4.Department of Mathematics and Center for Mathematical PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations