Advertisement

Journal of High Energy Physics

, 2014:126 | Cite as

Colored Kauffman homology and super-A-polynomials

  • Satoshi NawataEmail author
  • P. Ramadevi
  • Zodinmawia
Open Access
Article

Abstract

We study the structural properties of colored Kauffman homologies of knots. Quadruple-gradings play an essential role in revealing the differential structure of colored Kauffman homology. Using the differential structure, the Kauffman homologies carrying the symmetric tensor products of the vector representation for the trefoil and the figure-eight are determined. In addition, making use of relations from representation theory, we also obtain the HOMFLY homologies colored by rectangular Young tableaux with two rows for these knots. Furthermore, the notion of super-A-polynomials is extended in order to encompass two-parameter deformations of PSL(2, ℂ) character varieties.

Keywords

Chern-Simons Theories Topological Field Theories Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    N.Y. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    V. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Am. Math. Soc. 12 (1985) 103 [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 3 (2000) 359 [math.QA/9908171].CrossRefMathSciNetGoogle Scholar
  5. [5]
    B. Webster, Knot invariants and higher representation theory II: the categorification of quantum knot invariants, arXiv:1005.4559.
  6. [6]
    B. Cooper and V. Krushkal, Categorification of the Jones-Wenzl projectors, Quantum Topology 3 (2012) 139 [arXiv:1005.5117].CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    I. Frenkel, C. Stroppel and J. Sussan, Categorifying fractional Euler characteristics, Jones-Wenzl projector and 3j-symbols, Quantum Topology 3 (2012) 181 [arXiv:1007.4680].CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math.QA/0401268].CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008) 1387 [math.QA/0505056].CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    P. Fréyd et al., A new polynomial invariant of knots and links, Bull. Am. Math. Soc. 12 (1985) 239 [INSPIRE].CrossRefzbMATHGoogle Scholar
  11. [11]
    J.H. Przytycki and P. Traczyk, Conway algebras and skein equivalence of links, Amer. Math. Soc. 100 (1987) 744.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    S. Gukov, A.S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 [hep-th/0412243] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    N.M. Dunfield, S. Gukov and J. Rasmussen, The superpolynomial for knot homologies, Experiment. Math. 15 (2006) 129 [math.GT/0505662] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    S. Gukov and M. Stosic, Homological algebra of knots and BPS states, arXiv:1112.0030 [INSPIRE].
  15. [15]
    E. Gorsky, S. Gukov and M. Stosic, Quadruply-graded colored homology of knots, arXiv:1304.3481 [INSPIRE].
  16. [16]
    L.H. Kauffman, On knots, volume 115, Princeton university press, Princeton U.S.A. (1987).zbMATHGoogle Scholar
  17. [17]
    S. Stevan, Chern-Simons invariants of torus links, Annales Henri Poincaré 11 (2010) 1201 [arXiv:1003.2861] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    S. Sinha and C. Vafa, SO and Sp Chern-Simons at large-N , hep-th/0012136 [INSPIRE].
  19. [19]
    M. Mariño, String theory and the Kauffman polynomial, Commun. Math. Phys. 298 (2010) 613 [arXiv:0904.1088] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Gukov and J. Walcher, Matrix factorizations and Kauffman homology, hep-th/0512298 [INSPIRE].
  21. [21]
    M. Aganagic and S. Shakirov, Knot homology from refined Chern-Simons theory, arXiv:1105.5117 [INSPIRE].
  22. [22]
    P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, Superpolynomials for toric knots from evolution induced by cut-and-join operators, JHEP 03 (2013) 021 [arXiv:1106.4305] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    H. Fuji, S. Gukov, P. Sulkowski and H. Awata, Volume conjecture: refined and categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    E. Gorsky and A. Negut, Refined knot invariants and Hilbert schemes, arXiv:1304.3328 [INSPIRE].
  25. [25]
    I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv:1111.6195 [INSPIRE].
  26. [26]
    M. Aganagic and K. Schaeffer, Orientifolds and the refined topological string, JHEP 09 (2012) 084 [arXiv:1202.4456] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    R. Kaul and T. Govindarajan, Three-dimensional Chern-Simons theory as a theory of knots and links, Nucl. Phys. B 380 (1992) 293 [hep-th/9111063] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    R. Kaul and T. Govindarajan, Three-dimensional Chern-Simons theory as a theory of knots and links. 2. Multicolored links, Nucl. Phys. B 393 (1993) 392 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    P. Rama Devi, T. Govindarajan and R. Kaul, Three-dimensional Chern-Simons theory as a theory of knots and links. 3. Compact semisimple group, Nucl. Phys. B 402 (1993) 548 [hep-th/9212110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    R. Kaul, Chern-Simons theory, colored oriented braids and link invariants, Commun. Math. Phys. 162 (1994) 289 [hep-th/9305032] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    K. Yamagishi, M.-L. Ge and Y.-S. Wu, New hierarchies of knot polynomials from topological Chern-Simons gauge theory, Lett. Math. Phys. 19 (1990) 15 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    Y.-S. Wu and K. Yamagishi, Chern-Simons theory and Kaufman polynomials, Int. J. Mod. Phys. A 5 (1990) 1165 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    J.H. Horne, Skein relations and Wilson loops in Chern-Simons gauge theory, Nucl. Phys. B 334 (1990) 669 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    M. Rosso and V. Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theor. Ramifications 2 (1993) 97 [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    Y.-Z. Huang and L. Kong, Modular invariance for conformal full field algebras, Trans. Amer. Math. Soc. 362 (2010) 3027 [math.QA/0609570] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri Poincaré 13 (2012) 1873 [arXiv:1105.2012] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    J. Labastida, P. Llatas and A. Ramallo, Knot operators in Chern-Simons gauge theory, Nucl. Phys. B 348 (1991) 651 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    J. Labastida and E. Perez, A relation between the Kauffman and the HOMFLY polynomials for torus knots, q-alg/9507031 [INSPIRE].
  42. [42]
    E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133 (1995) 637 [hep-th/9207094] [INSPIRE].MathSciNetGoogle Scholar
  43. [43]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  44. [44]
    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    V. Bouchard, B. Florea and M. Mariño, Counting higher genus curves with crosscaps in Calabi-Yau orientifolds, JHEP 12 (2004) 035 [hep-th/0405083] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    V. Bouchard, B. Florea and M. Mariño, Topological open string amplitudes on orientifolds, JHEP 02 (2005) 002 [hep-th/0411227] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Borhade and P. Ramadevi, SO(N) reformulated link invariants from topological strings, Nucl. Phys. B 727 (2005) 471 [hep-th/0505008] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].
  49. [49]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  50. [50]
    J. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large-N , JHEP 11 (2000) 007 [hep-th/0010102] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].
  52. [52]
    K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [INSPIRE].
  53. [53]
    M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE].
  54. [54]
    M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002) 1 [hep-th/0105045] [INSPIRE].MathSciNetGoogle Scholar
  55. [55]
    B.S. Acharya, M. Aganagic, K. Hori and C. Vafa, Orientifolds, mirror symmetry and superpotentials, hep-th/0202208 [INSPIRE].
  56. [56]
    M. Aganagic and C. Vafa, Large-N duality, mirror symmetry and a Q-deformed A-polynomial for knots, arXiv:1204.4709 [INSPIRE].
  57. [57]
    A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    R. Dijkgraaf, H. Fuji and M. Manabe, The volume conjecture, perturbative knot invariants and recursion relations for topological strings, Nucl. Phys. B 849 (2011) 166 [arXiv:1010.4542] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261 [INSPIRE].
  61. [61]
    J. Rasmussen, Some differentials on Khovanov-Rozansky homology, math.GT/0607544.
  62. [62]
    A. Morozov, Special colored Superpolynomials and their representation-dependence, JHEP 12 (2012) 116 [arXiv:1208.3544] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.A. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 [math.GT/0402131].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    M. Khovanov and L. Rozansky, Virtual crossings, convolutions and a categorification of the SO(2N) Kauffman polynomial, math.QA/0701333.
  65. [65]
    A. Anokhina and A. Morozov, Cabling procedure for the colored HOMFLY polynomials, arXiv:1307.2216 [INSPIRE].
  66. [66]
    H. Murakami, An introduction to the volume conjecture and its generalizations, arXiv:0802.0039.
  67. [67]
    R. Kashaev, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  68. [68]
    H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85 [math.GT/9905075].CrossRefzbMATHMathSciNetGoogle Scholar
  69. [69]
    S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/0306165] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].
  71. [71]
    S. Gukov and H. Murakami, SL(2, C) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys. 86 (2008) 79 [math.GT/0608324] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  72. [72]
    D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994) 47.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  73. [73]
    T. Dimofte and S. Gukov, Chern-Simons theory and S-duality, JHEP 05 (2013) 109 [arXiv:1106.4550] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monogr. 7 (2004) 291 [math.GT/0306230].CrossRefMathSciNetGoogle Scholar
  75. [75]
    S. Garoufalidis and T.T. Le, The colored Jones function is q-holonomic, Geom. Topol. 9 (2004) 1253 [math.GT/0309214].CrossRefMathSciNetGoogle Scholar
  76. [76]
    S. Garoufalidis, The colored HOMFLY polynomial is q-holonomic, arXiv:1211.6388 [INSPIRE].
  77. [77]
    S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    A. Champanerkar, A-polynomial and Bloch invariants of hyperbolic 3-manifolds, Doctoral dissertation, Columbia University, U.S.A. (2003).Google Scholar
  79. [79]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  80. [80]
    Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, arXiv:1108.4389 [INSPIRE].
  82. [82]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, arXiv:1112.5179 [INSPIRE].
  83. [83]
    J. Yagi, 3d TQFT from 6d SCFT, JHEP 08 (2013) 017 [arXiv:1305.0291] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Lee and M. Yamazaki, 3d Chern-Simons theory from M5-branes, JHEP 12 (2013) 035 [arXiv:1305.2429] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  85. [85]
    C. Cordova and D.L. Jafferis, Complex Chern-Simons from M5-branes on the squashed three-sphere, arXiv:1305.2891 [INSPIRE].
  86. [86]
    C. Beem, T. Dimofte and S. Pasquetti, Holomorphic blocks in three dimensions, arXiv:1211.1986 [INSPIRE].
  87. [87]
    T. Dimofte, D. Gaiotto and R. van der Veen, RG domain walls and hybrid triangulations, arXiv:1304.6721 [INSPIRE].
  88. [88]
    H.-J. Chung, T. Dimofte, S. Gukov and P. Sulkowski, work in progress.Google Scholar
  89. [89]
    L. Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 277 (2011) 2189 [arXiv:1010.0451].CrossRefGoogle Scholar
  90. [90]
    T. Ekholm, J. Etnyre, L. Ng and M. Sullivan, Filtrations on the knot contact homology of transverse knots, Math. Annalen 355 (2013) 1561 [arXiv:1010.0450].CrossRefzbMATHMathSciNetGoogle Scholar
  91. [91]
    S. Nawata, P. Ramadevi and Zodinmawia, Multiplicity-free quantum 6j-symbols for Uq (\( \mathfrak{s}{{\mathfrak{l}}_N} \)), Lett. Math. Phys. 103 (2013) 1389 [arXiv:1302.5143] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  92. [92]
    K. Liu and P. Peng, Proof of the Labastida-Marino-Ooguri-Vafa conjecture, J. Diff. Geom. 85 (2010) 479 [arXiv:0704.1526] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  93. [93]
    K. Liu and P. Peng, On a proof of the Labastida-Marino-Ooguri-Vafa conjecture, Math. Res. Lett. 17 (2010) 493 [arXiv:1012.2635] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  94. [94]
    R.J. Hadji and H.R. Morton, A basis for the full Homfly skein of the annulus, Math. Proc. Cambridge Philos. Soc. 141 (2006) 81 [math.GT/0408078].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  95. [95]
    C. Paul, P. Borhade and P. Ramadevi, Composite invariants and unoriented topological string amplitudes, arXiv:1003.5282 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.NIKHEF theory groupAmsterdamThe Netherlands
  2. 2.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations