Journal of High Energy Physics

, 2014:125 | Cite as

Quantum-induced interactions in the moduli space of degenerate BPS domain walls

  • A. Alonso-IzquierdoEmail author
  • J. Mateos Guilarte
Open Access


In this paper quantum effects are investigated in a very special two-scalar field model having a moduli space of BPS topological defects. In a (1 + 1)-dimensional space-time the defects are classically degenerate in mass kinks, but in (3 + 1) dimensions the kinks become BPS domain walls, all of them sharing the same surface tension at the classical level. The heat kernel/zeta function regularization method will be used to control the divergences induced by the quantum kink and domain wall fluctuations. A generalization of the Gilkey-DeWitt-Avramidi heat kernel expansion will be developed in order to accommodate the infrared divergences due to zero modes in the spectra of the second-order kink and domain wall fluctuation operators, which are respectively N = 2 × N = 2 matrix ordinary or partial differential operators. Use of these tools in the spectral zeta function associated with the Hessian operators paves the way to obtain general formulas for the one-loop kink mass and domain wall tension shifts in any (1 + 1)- or (3 + 1)-dimensional N -component scalar field theory model. Application of these formulae to the BPS kinks or domain walls of the N = 2 model mentioned above reveals the breaking of the classical mass or surface tension degeneracy at the quantum level. Because the main parameter distinguishing each member in the BPS kink or domain wall moduli space is essentially the distance between the centers of two basic kinks or walls, the breaking of the degeneracy amounts to the surge in quantum-induced forces between the two constituent topological defects. The differences in surface tension induced by one-loop fluctuations of BPS walls give rise mainly to attractive forces between the constituent walls except if the two basic walls are very far apart. Repulsive forces between two close walls only arise if the coupling approaches the critical value from below.


Solitons Monopoles and Instantons Field Theories in Lower Dimensions Renormalization Regularization and Renormalons 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994).zbMATHGoogle Scholar
  2. [2]
    M.A. Shifman and M. Voloshin, Degenerate domain wall solutions in supersymmetric theories, Phys. Rev. D 57 (1998) 2590 [hep-th/9709137] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Eto and N. Sakai, Solvable models of domain walls in N = 1 supergravity, Phys. Rev. D 68 (2003) 125001 [hep-th/0307276] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    D. Bazeia, J. Nascimento, R. Ribeiro and D. Toledo, Soliton stability in systems of two real scalar fields, J. Phys. A 30 (1997) 8157 [hep-th/9705224] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    A.A. Izquierdo, M. González Leon and J.M. Guilarte, The kink variety in systems of two coupled scalar fields in two space-time dimensions, Phys. Rev. D 65 (2002) 085012 [hep-th/0201200] [INSPIRE].ADSGoogle Scholar
  6. [6]
    N. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    N. Manton and P. Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2004).Google Scholar
  8. [8]
    A. Alonso Izquierdo, M. González Leon, J. Mateos Guilarte and M. de la Torre Mayado, Adiabatic motion of two component BPS kinks, Phys. Rev. D 66 (2002) 105022 [hep-th/0207064] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Tong, The moduli space of BPS domain walls, Phys. Rev. D 66 (2002) 025013 [hep-th/0202012] [INSPIRE].ADSGoogle Scholar
  10. [10]
    N.D. Antunes, E.J. Copeland, M. Hindmarsh and A. Lukas, Kinky brane worlds, Phys. Rev. D 68 (2003) 066005 [hep-th/0208219] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    R.F. Dashen, B. Hasslacher and A. Neveu, Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons, Phys. Rev. D 10 (1974) 4130 [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.S. Goldhaber, A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Quantum corrections to mass and central charge of supersymmetric solitons, Phys. Rept. 398 (2004) 179 [hep-th/0401152] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.A. Shifman, A.I. Vainshtein and M.B. Voloshin, Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry, Phys. Rev. D 59 (1999) 045016 [hep-th/9810068] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Graham and R. Jaffe, Energy, central charge and the BPS bound for (1 + 1)-dimensional supersymmetric solitons, Nucl. Phys. B 544 (1999) 432 [hep-th/9808140] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Rebhan and P. van Nieuwenhuizen, No saturation of the quantum Bogomolnyi bound by two-dimensional supersymmetric solitons, Nucl. Phys. B 508 (1997) 449 [hep-th/9707163] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Nastase, M.A. Stephanov, P. van Nieuwenhuizen and A. Rebhan, Topological boundary conditions, the BPS bound and elimination of ambiguities in the quantum mass of solitons, Nucl. Phys. B 542 (1999) 471 [hep-th/9802074] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Alonso Izquierdo, W. Garcia Fuertes, M. Gonzalez Leon and J. Mateos Guilarte, One loop correction to classical masses of quantum kink families, Nucl. Phys. B 681 (2004) 163 [hep-th/0304125] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Mateos Guilarte, A. Alonso-Izquierdo, W. Garcia Fuertes, M. de la Torre Mayado and M. Senosiain, Quantum fluctuations around low-dimensional topological defects, PoS(ISFTG)013 [arXiv:0909.2107] [INSPIRE].
  19. [19]
    M. Bordag and J. Muñoz-Castañeda, Quantum vacuum interaction between two sine-Gordon kinks, J. Phys. A 45 (2012) 374012 [arXiv:1112.3237] [INSPIRE].Google Scholar
  20. [20]
    J.M. Muñoz-Castañeda, J.M. Guilarte and A.M. Mosquera, Quantum vacuum energies and Casimir forces between partially transparent δ-function plates, Phys. Rev. D 87 (2013) 105020 [arXiv:1305.2054] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Elizalde, S. Odintsov, A. Romeo, A. Bytsenko and S. Zerbini, Zeta regularization techniques with applications, World Scientific, Singapore (1994).CrossRefzbMATHGoogle Scholar
  22. [22]
    K. Kirsten, Spectral functions in mathematics and physics, Chapman and Hall/CRC, New York U.S.A. (2002).zbMATHGoogle Scholar
  23. [23]
    D. Vassilevich, Heat kernel expansion: users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    B.S. de Witt, Dynamical theory of groups and fields, Gordon and Breach, U.S.A. (1965).Google Scholar
  25. [25]
    P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish Inc, U.S.A. (1984).zbMATHGoogle Scholar
  26. [26]
    J. Roe, Elliptic operators, topology and asymptotic methods, Longman Scientific and Technical, New York U.S.A. (1988).zbMATHGoogle Scholar
  27. [27]
    I.G. Avramidi, Heat kernel approach in quantum field theory, Nucl. Phys. Proc. Suppl. 104 (2002) 3 [math-ph/0107018] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    I. Avramidi and R. Schimming, Heat kernel coefficients to the matrix Schrödinger operator, J. Math. Phys. 36 (1995) 5042 [hep-th/9501026] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    J. Dowker and R. Critchley, Effective Lagrangian and energy momentum tensor in de Sitter space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    S. Hawking, Zeta function regularization of path integrals in curved space-time, Commun. Math. Phys. 55 (1977) 133 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    M. Bordag, A.S. Goldhaber, P. van Nieuwenhuizen and D. Vassilevich, Heat kernels and zeta function regularization for the mass of the SUSY kink, Phys. Rev. D 66 (2002) 125014 [hep-th/0203066] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Alonso Izquierdo, W. Garcia Fuertes, M. Gonzalez Leon and J. Mateos Guilarte, Generalized zeta functions and one loop corrections to quantum kink masses, Nucl. Phys. B 635 (2002) 525 [hep-th/0201084] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    A. Alonso-Izquierdo, J.M. Guilarte and M.S. Plyushchay, Kink mass quantum shifts from SUSY quantum mechanics, Annals Phys. 331 (2013) 269 [arXiv:1212.0818] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    A. Alonso Izquierdo, W. Garcia Fuertes, M. Gonzalez Leon and J. Mateos Guilarte, Semiclassical mass of quantum k component topological kinks, Nucl. Phys. B 638 (2002) 378 [hep-th/0205137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Alonso-Izquierdo and J.M. Guilarte, One-loop kink mass shifts: a computational approach, Nucl. Phys. B 852 (2011) 696 [arXiv:1107.2216] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Alonso-Izquierdo and J. Mateos-Guilarte, Kink fluctuation asymptotics and zero modes, Eur. Phys. J. C 72 (2012) 2170 [arXiv:1207.0942] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Alonso-Izquierdo and J. Mateos-Guilarte, Gilkey-de Witt heat kernel expansion and zero modes, Nuovo Cim. C 3 (2013) 3 [arXiv:1303.3138] [INSPIRE].Google Scholar
  38. [38]
    C. Aragão de Carvalho, G. Marques, A. da Silva and I. Ventura, Domain walls at finite temperature, Nucl. Phys. B 265 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Litvintsev and P. van Nieuwenhuizen, Once more on the BPS bound for the SUSY kink, hep-th/0010051 [INSPIRE].
  40. [40]
    A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, One loop surface tensions of (supersymmetric) kink domain walls from dimensional regularization, New J. Phys. 4 (2002) 31 [hep-th/0203137] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Rebhan, A. Schmitt and P. van Nieuwenhuizen, One-loop results for kink and domain wall profiles at zero and finite temperature, Phys. Rev. D 80 (2009) 045012 [arXiv:0903.5242] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Alonso-Izquierdo, M.A. González León, J.M. Guilarte and M. de la Torre Mayado, On domain walls in a Ginzburg-Landau non-linear S 2 -σ-model, JHEP 08 (2010) 111 [arXiv:1009.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, Kinks in a non-linear massive σ-model, Phys. Rev. Lett. 101 (2008) 131602 [arXiv:0808.3052] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.A. Izquierdo, M.A. González León and J. Mateos Guilarte, BPS and non-BPS kinks in a massive non-linear S 2 -σ-model, Phys. Rev. D 79 (2009) 125003 [arXiv:0903.0593] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Alonso-Izquierdo and J. Mateos Guilarte, On a family of (1 + 1)-dimensional scalar field theory models: kinks, stability, one-loop mass shifts, Annals Phys. 327 (2012) 2251 [arXiv:1205.3069] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    E. Megias, E. Ruiz Arriola and L. Salcedo, The thermal heat kernel expansion and the one loop effective action of QCD at finite temperature, Phys. Rev. D 69 (2004) 116003 [hep-ph/0312133] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Alonso Izquierdo, W. García Fuertes, M. de la Torre Mayado and J. Mateos Guilarte, Quantum corrections to the mass of self-dual vortices, Phys. Rev. D 70 (2004) 061702 [hep-th/0406129] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Alonso Izquierdo, W. García Fuertes, M. de la Torre Mayado and J. Mateos Guilarte, Quantum oscillations of self-dual Abrikosov-Nielsen-Olesen vortices, Phys. Rev. D 71 (2005) 125010 [hep-th/0504143] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A.A. Izquierdo, W. García Fuertes, M. de la Torre Mayado and J.M. Guilarte, One loop corrections to the mass of self-dual semi-local planar topological solitons, Nucl. Phys. B 797 (2008) 431 [arXiv:0707.4592] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Gibbons, M. Ortiz, F. Ruiz Ruiz and T. Samols, Semilocal strings and monopoles, Nucl. Phys. B 385 (1992) 127 [hep-th/9203023] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Wipf, Tunnel determinants, Nucl. Phys. B 269 (1986) 24 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Departamento de Matematica Aplicada and IUFFyMUniversidad de SalamancaSalamancaSpain
  2. 2.Departamento de Fisica Fundamental and IUFFyMUniversidad de SalamancaSalamancaSpain

Personalised recommendations