Journal of High Energy Physics

, 2014:123 | Cite as

Muon g − 2 vs LHC in supersymmetric models

  • Motoi Endo
  • Koichi Hamaguchi
  • Sho Iwamoto
  • Takahiro Yoshinaga
Open Access
Article

Abstract

There is more than 3σ deviation between the experimental and theoretical results of the muon g − 2. When interpreted in SUSY extensions of the SM, this anomaly suggests that some of the SUSY particles have a mass of order 100 GeV. We study searches for those particles at the LHC with particular attention to the muon g − 2. In particular, the recent results on the searches for the non-colored SUSY particles are investigated in the parameter region where the muon g − 2 is explained. The analysis is independent of details of the SUSY models. Future prospects of the collider searches are also discussed.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  4. [4]
    B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and α QED \( \left( {\mathrm{M}_Z^2} \right) \), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g − 2 of the muon and delta alpha, Chin. Phys. C 34 (2010) 728 [arXiv:1001.5401] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α \( \left( {\mathrm{M}_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Davier, A. Hoecker, G. Lopez Castro, B. Malaescu, X. Mo et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π +π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α \( \left( {\mathrm{M}_Z^2} \right) \), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  11. [11]
    J. Prades, E. de Rafael and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:0901.0306 [INSPIRE].
  12. [12]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
  13. [13]
    J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].ADSGoogle Scholar
  14. [14]
    U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g − 2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2012-109, CERN, Geneva Switzerland (2012).
  17. [17]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar
  18. [18]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric Standard Model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Vacuum stability bound on extended GMSB models, JHEP 06 (2012) 060 [arXiv:1202.2751] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Endo, K. Hamaguchi, K. Ishikawa, S. Iwamoto and N. Yokozaki, Gauge mediation models with vectorlike matters at the LHC, JHEP 01 (2013) 181 [arXiv:1212.3935] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].ADSGoogle Scholar
  31. [31]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154, CERN, Geneva Switzerland (2012).
  33. [33]
    CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022, CERN, Geneva Switzerland (2012).
  34. [34]
    M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy squarks and light sleptons in gauge mediationfrom the viewpoint of 125 GeV Higgs boson and muon g − 2, JHEP 03 (2013) 078 [arXiv:1210.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Kitahara, Vacuum stability constraints on the enhancement of the h → γγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Kudo and M. Yamaguchi, Inflation with low reheat temperature and cosmological constraint on stable charged massive particles, Phys. Lett. B 516 (2001) 151 [hep-ph/0103272] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002, CERN, Geneva Switzerland (2010).
  47. [47]
    J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
  49. [49]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, Measurement of the mistag rate with 5 fb−1 of data collected by the ATLAS detector, ATLAS-CONF-2012-040, CERN, Geneva Switzerland (2012).
  55. [55]
    ATLAS collaboration, Measurement of the b-tag efficiency in a sample of jets containing muons with 5 fb−1 of data from the ATLAS detector, ATLAS-CONF-2012-043, CERN, Geneva Switzerland (2012).
  56. [56]
    ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE].ADSGoogle Scholar
  57. [57]
    ATLAS collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063, CERN, Geneva Switzerland (2011).
  58. [58]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  59. [59]
    H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].ADSGoogle Scholar
  60. [60]
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    ATLAS collaboration, Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 01 (2013) 131 [arXiv:1210.2852] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Fermilab P989 collaboration, B. Lee Roberts, The Fermilab muon (g − 2) project, Nucl. Phys. Proc. Suppl. 218 (2011) 237 [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    J-PARC New g-2/EDM experiment collaboration, H. Iinuma, New approach to the muon g−2 and EDM experiment at J-PARC, J. Phys. Conf. Ser. 295 (2011) 012032 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    Y.M. Shatunov et al., Project of a new electron positron collider VEPP-2000, in Proceedings of the 7th European Particle Accelerator Conference, J.L. Laclare et al. eds., Conf. Proc. C 0006262 (2000) 439 [INSPIRE].
  65. [65]
    E. de Rafael, Update of the electron and muon g-factors, Nucl. Phys. Proc. Suppl. 234 (2013) 193 [arXiv:1210.4705] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    QCDSF collaboration, M. Gockeler et al., Vacuum polarization and hadronic contribution to muon g − 2 from lattice QCD, Nucl. Phys. B 688 (2004) 135 [hep-lat/0312032] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].ADSGoogle Scholar
  69. [69]
    X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice determination of the hadronic contribution to the muon g − 2 using dynamical domain wall fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M. Della Morte, B. Jager, A. Juttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2)μ, JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-035, CERN, Geneva, Switzerland (2013).

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Motoi Endo
    • 1
  • Koichi Hamaguchi
    • 1
  • Sho Iwamoto
    • 1
  • Takahiro Yoshinaga
    • 1
  1. 1.Department of PhysicsThe University of TokyoBunkyoJapan

Personalised recommendations