Advertisement

Journal of High Energy Physics

, 2014:123 | Cite as

Muon g − 2 vs LHC in supersymmetric models

  • Motoi Endo
  • Koichi Hamaguchi
  • Sho Iwamoto
  • Takahiro Yoshinaga
Open Access
Article

Abstract

There is more than 3σ deviation between the experimental and theoretical results of the muon g − 2. When interpreted in SUSY extensions of the SM, this anomaly suggests that some of the SUSY particles have a mass of order 100 GeV. We study searches for those particles at the LHC with particular attention to the muon g − 2. In particular, the recent results on the searches for the non-colored SUSY particles are investigated in the parameter region where the muon g − 2 is explained. The analysis is independent of details of the SUSY models. Future prospects of the collider searches are also discussed.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  4. [4]
    B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and α QED \( \left( {\mathrm{M}_Z^2} \right) \), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g − 2 of the muon and delta alpha, Chin. Phys. C 34 (2010) 728 [arXiv:1001.5401] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α \( \left( {\mathrm{M}_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Davier, A. Hoecker, G. Lopez Castro, B. Malaescu, X. Mo et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π +π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α \( \left( {\mathrm{M}_Z^2} \right) \), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  11. [11]
    J. Prades, E. de Rafael and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:0901.0306 [INSPIRE].
  12. [12]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
  13. [13]
    J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].ADSGoogle Scholar
  14. [14]
    U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g − 2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2012-109, CERN, Geneva Switzerland (2012).
  17. [17]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar
  18. [18]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric Standard Model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Vacuum stability bound on extended GMSB models, JHEP 06 (2012) 060 [arXiv:1202.2751] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Endo, K. Hamaguchi, K. Ishikawa, S. Iwamoto and N. Yokozaki, Gauge mediation models with vectorlike matters at the LHC, JHEP 01 (2013) 181 [arXiv:1212.3935] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].ADSGoogle Scholar
  31. [31]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154, CERN, Geneva Switzerland (2012).
  33. [33]
    CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022, CERN, Geneva Switzerland (2012).
  34. [34]
    M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy squarks and light sleptons in gauge mediationfrom the viewpoint of 125 GeV Higgs boson and muon g − 2, JHEP 03 (2013) 078 [arXiv:1210.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Kitahara, Vacuum stability constraints on the enhancement of the h → γγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Kudo and M. Yamaguchi, Inflation with low reheat temperature and cosmological constraint on stable charged massive particles, Phys. Lett. B 516 (2001) 151 [hep-ph/0103272] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002, CERN, Geneva Switzerland (2010).
  47. [47]
    J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
  49. [49]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, Measurement of the mistag rate with 5 fb−1 of data collected by the ATLAS detector, ATLAS-CONF-2012-040, CERN, Geneva Switzerland (2012).
  55. [55]
    ATLAS collaboration, Measurement of the b-tag efficiency in a sample of jets containing muons with 5 fb−1 of data from the ATLAS detector, ATLAS-CONF-2012-043, CERN, Geneva Switzerland (2012).
  56. [56]
    ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE].ADSGoogle Scholar
  57. [57]
    ATLAS collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063, CERN, Geneva Switzerland (2011).
  58. [58]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  59. [59]
    H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].ADSGoogle Scholar
  60. [60]
    H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    ATLAS collaboration, Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 01 (2013) 131 [arXiv:1210.2852] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Fermilab P989 collaboration, B. Lee Roberts, The Fermilab muon (g − 2) project, Nucl. Phys. Proc. Suppl. 218 (2011) 237 [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    J-PARC New g-2/EDM experiment collaboration, H. Iinuma, New approach to the muon g−2 and EDM experiment at J-PARC, J. Phys. Conf. Ser. 295 (2011) 012032 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    Y.M. Shatunov et al., Project of a new electron positron collider VEPP-2000, in Proceedings of the 7th European Particle Accelerator Conference, J.L. Laclare et al. eds., Conf. Proc. C 0006262 (2000) 439 [INSPIRE].
  65. [65]
    E. de Rafael, Update of the electron and muon g-factors, Nucl. Phys. Proc. Suppl. 234 (2013) 193 [arXiv:1210.4705] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    QCDSF collaboration, M. Gockeler et al., Vacuum polarization and hadronic contribution to muon g − 2 from lattice QCD, Nucl. Phys. B 688 (2004) 135 [hep-lat/0312032] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].ADSGoogle Scholar
  69. [69]
    X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice determination of the hadronic contribution to the muon g − 2 using dynamical domain wall fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M. Della Morte, B. Jager, A. Juttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2)μ, JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-035, CERN, Geneva, Switzerland (2013).

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Motoi Endo
    • 1
  • Koichi Hamaguchi
    • 1
  • Sho Iwamoto
    • 1
  • Takahiro Yoshinaga
    • 1
  1. 1.Department of PhysicsThe University of TokyoBunkyoJapan

Personalised recommendations