Journal of High Energy Physics

, 2014:100 | Cite as

2D fuzzy anti-de Sitter space from matrix models

Open Access
Article

Abstract

We study the fuzzy hyperboloids AdS2 and dS2 as brane solutions in matrix models. The unitary representations of SO(2, 1) required for quantum field theory are identified, and explicit formulae for their realization in terms of fuzzy wavefunctions are given. In a second part, we study the (A)dS2 brane geometry and its dynamics, as governed by a suitable matrix model. In particular, we show that trace of the energy-momentum tensor of matter induces transversal perturbations of the brane and of the Ricci scalar. This leads to a linearized form of Henneaux-Teitelboim-type gravity, illustrating the mechanism of emergent gravity in matrix models.

Keywords

Non-Commutative Geometry M(atrix) Theories 2D Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Madore, The Fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    H. Grosse, C. Klimčík and P. Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996) 231 [hep-th/9505175] [INSPIRE].CrossRefMATHGoogle Scholar
  3. [3]
    H. Grosse, C. Klimčík and P. Prešnajder, Field theory on a supersymmetric lattice, Commun. Math. Phys. 185 (1997) 155 [hep-th/9507074] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    C.-S. Chu, J. Madore and H. Steinacker, Scaling limits of the fuzzy sphere at one loop, JHEP 08 (2001) 038 [hep-th/0106205] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Karabali, V. Nair and A. Polychronakos, Spectrum of Schrödinger field in a noncommutative magnetic monopole, Nucl. Phys. B 627 (2002) 565 [hep-th/0111249] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. Vaidya, Scalar multi solitons on the fuzzy sphere, JHEP 01 (2002) 011 [hep-th/0109102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl. Phys. B 679 (2004) 66 [hep-th/0307075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Castro-Villarreal, R. Delgadillo-Blando and B. Ydri, A Gauge-invariant UV-IR mixing and the corresponding phase transition for U(1) fields on the fuzzy sphere, Nucl. Phys. B 704 (2005)111 [hep-th/0405201] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE].
  10. [10]
    R. Delgadillo-Blando, D. O’Connor and B. Ydri, Matrix Models, Gauge Theory and Emergent Geometry, JHEP 05 (2009) 049 [arXiv:0806.0558] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    P.-M. Ho and M. Li, Large-N expansion from fuzzy AdS 2, Nucl. Phys. B 590 (2000) 198 [hep-th/0005268] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    P.-M. Ho and M. Li, Fuzzy spheres in AdS/CFT correspondence and holography from noncommutativity, Nucl. Phys. B 596 (2001) 259 [hep-th/0004072] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    H. Miglbauer, Kovariante nichtkommutative Näherungen nichtkompakter Geometrien und Nicht-Euklidische 2D-Fuzzy-Quantenfelder, PhD thesis, Technical University Graz, 1994, unpublished.Google Scholar
  14. [14]
    H. Grosse, P. Prešnajder and Z. Wang, Quantum Field Theory on quantized Bergman domain, J. Math. Phys. 53 (2012) 013508 [arXiv:1005.5723] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Hasebe, Non-Compact Hopf Maps and Fuzzy Ultra-Hyperboloids, Nucl. Phys. B 865 (2012)148 [arXiv:1207.1968] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J.-P. Gazeau and F. Toppan, A Natural fuzzyness of de Sitter space-time, Class. Quant. Grav. 27 (2010) 025004 [arXiv:0907.0021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space. I. The Principle series, JHEP 08 (2006) 082 [hep-th/0606119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space. II. The complementary and discrete series, JHEP 09 (2007) 030 [arXiv:0707.2907] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    H. Steinacker, Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models, Nucl. Phys. B 810 (2009) 1 [arXiv:0806.2032] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    H. Steinacker, Gravity and compactified branes in matrix models, JHEP 07 (2012) 156 [arXiv:1202.6306] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    H. Steinacker, The curvature of branes, currents and gravity in matrix models, JHEP 01 (2013)112 [arXiv:1210.8364] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    H. Steinacker, On the Newtonian limit of emergent NC gravity and long-distance corrections, JHEP 12 (2009) 024 [arXiv:0909.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.D. Brown, M. Henneaux and C. Teitelboim, Black Holes in Two Space-time Dimensions, Phys. Rev. D 33 (1986) 319 [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    R.B. Mann, A. Shiekh and L. Tarasov, Classical and Quantum Properties of Two-dimensional Black Holes, Nucl. Phys. B 341 (1990) 134 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Bargmann, Irreducible unitary representations of the Lorentz group, Annals Math. 48 (1947)568 [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    J. Repka, Tensor products of unitary representations of SL 2(R), Bull. Amer. Math. Soc. 82 (1976)930.CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    A. van Tonder, Cohomology and decomposition of tensor product representations of SL(2, ℝ), Nucl. Phys. B 677 (2004) 614 [hep-th/0212149] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    V.F. Molčanov, Tensor products of unitary representations of the three-dimensional Lorentz group, Math. USSR Izv. 15 (1980) 113.CrossRefGoogle Scholar
  30. [30]
    R.P. Martin, Tensor products for SL(2, k), Trans. Amer. Math. Soc. 239 (1978) 197.MATHMathSciNetGoogle Scholar
  31. [31]
    W.J. Holman and Lawrence C. Biedenharn, Complex angular momenta and the groups SU(1, 1) and SU(2), Ann. Phys. 39 (1966) 1.ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    W.J. Holman and Lawrence C. Biedenharn, A general study of the Wigner coefficients of SU(1, 1), Ann. Phys. 47 (1968) 205.ADSCrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    M. Bordemann, E. Meinrenken and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Commun. Math. Phys. 165 (1994) 281 [hep-th/9309134] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    S.T. Ali and M. Englis, Quantization methods: A Guide for physicists and analysts, Rev. Math. Phys. 17 (2005) 391 [math-ph/0405065] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    D. Borthwick and A. Uribe, Almost complex structures and geometric quantization, Math. Res. Letters 3 (1996) 845 [arXiv:dg-ga/9608006].CrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    S. Waldmann, Poisson-Geometrie und Deformations-quantisierung, Springer, 2007.Google Scholar
  37. [37]
    J. Arnlind, J. Choe and J. Hoppe, Noncommutative Minimal Surfaces, arXiv:1301.0757.
  38. [38]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding universe as a classical solution in the Lorentzian matrix model for nonperturbative superstring theory, Phys. Rev. D 86 (2012) 027901 [arXiv:1110.4803] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Theoretical Physics DivisionRudjer Boskovic InstituteZagrebCroatia
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations