Quark masses in Higgs production with a jet veto

  • Andrea BanfiEmail author
  • Pier Francesco Monni
  • Giulia Zanderighi
Open Access


We study the impact of finite mass effects due to top and bottom loops in the jet-veto distribution for Higgs production. We discuss the appearance of non-factorizing logarithms in the region p t,vetom b . We study their numerical impact and argue that these terms can be treated as a finite remainder. We therefore detail our prescription for resumming the jet-vetoed cross section and for assessing its uncertainty in the presence of finite mass effects. Resummation for the jet-veto, including mass effects, has been implemented in the public code JetVHeto.


Jets Hadronic Colliders 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL + NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL+ NNLO, arXiv:1307.1808 [INSPIRE].
  8. [8]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p + NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k T jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order \( \alpha_s^4 \), JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    MCFMMonte Carlo for FeMtobarn processes webpage,
  18. [18]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: a NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.V. Harlander, K.J. Ozeren and M. Wiesemann, Higgs plus jet production in bottom quark annihilation at next-to-leading order, Phys. Lett. B 693 (2010) 269 [arXiv:1007.5411] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Harlander and M. Wiesemann, Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order, JHEP 04 (2012) 066 [arXiv:1111.2182] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Bühler, F. Herzog, A. Lazopoulos and R. Müller, The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO, JHEP 07 (2012) 115 [arXiv:1204.4415] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  26. [26]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    The MC@NLO package version 4.08 webpage,
  29. [29]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO + NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141 [arXiv:1105.4319] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    U. Baur and E.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k T jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  40. [40]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Vicini, Quark-mass effects in POWHEG and Hres results, talk given at ggF meeting,, CERN Geneva Switzerland July 23 2013.
  46. [46]
    JetVHeto webpage,
  47. [47]
    S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Banfi, G. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2014

Authors and Affiliations

  • Andrea Banfi
    • 1
    Email author
  • Pier Francesco Monni
    • 2
    • 3
    • 4
  • Giulia Zanderighi
    • 3
  1. 1.Department of Physics and AstronomyUniversity of SussexBrightonU.K.
  2. 2.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  3. 3.Rudolf Peierls Centre for Thoeretical PhysicsUniversity of OxfordOxfordU.K.
  4. 4.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.

Personalised recommendations