Motivic amplitudes and cluster coordinates

  • J. K. Golden
  • A. B. Goncharov
  • M. Spradlin
  • C. Vergu
  • A. Volovich
Open Access
Article

Abstract

In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Confn(ℙ3) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude \( \mathcal{A}_{7,2}^{\mathcal{M}} \) and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster\( \mathcal{X} \)-coordinates on Confn(ℙ3). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to \( \mathcal{A}_{7,2}^{\mathcal{M}} \) being expressible in terms of classical

polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster \( \mathcal{X} \)-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity.

Keywords

Supersymmetric gauge theory Scattering Amplitudes 

References

  1. [1]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
  3. [3]
    F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [INSPIRE].
  4. [4]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    R. Roiban, M. Spradlin and A. Volovich, Scattering amplitudes in gauge theories: Progress and outlook, J.Phys. A 44 (2011) 450301.MathSciNetGoogle Scholar
  6. [6]
    B. Feng and M. Luo, An introduction to on-shell recursion relations, Front. Phys. ,2012,7 (5):533-575 [arXiv:1111.5759] [INSPIRE].
  7. [7]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual spinor model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    O. Schlotterer and S. Stieberger, Motivic multiple Zeta values and superstring amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    J. Drummond and É. Ragoucy, Superstring amplitudes and the associator, JHEP 08 (2013) 135 [arXiv:1301.0794] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple Zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α -expansion of superstring trees from the Drinfeld associator, arXiv:1304.7304 [INSPIRE].
  14. [14]
    J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. Drummond, G. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865 [math/0311245] [INSPIRE].MATHMathSciNetGoogle Scholar
  25. [25]
    S. Fomin and A. Zelevinsky, Cluster algebras. I: foundations, J. Am. Math. Soc. 15 (2002) 497.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    S. Fomin and A. Zelevinsky, Cluster algebras. II: finite type classification, Invent. Math. 154 (2003) 63.ADSCrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    N. Arkani-Hamed, F. Cachazo and C. Cheung, The grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the grassmannian, JHEP 01 (2011) 108 [arXiv:0912.3249] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605 [INSPIRE].
  33. [33]
    S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. Math. 158 (2003) 977.CrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    J.D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Am. Math. Soc. 108 (1963) 275.CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    J.D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Am. Math. Soc. 108 (1963) 293.MathSciNetGoogle Scholar
  36. [36]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    R. Penrose and M.A. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  40. [40]
    L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978) 394 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Beisert and C. Vergu, On the geometry of null polygons in full N = 4 superspace, Phys. Rev. D 86 (2012) 026006 [arXiv:1203.0525] [INSPIRE].ADSGoogle Scholar
  43. [43]
    N. Beisert, S. He, B.U. Schwab and C. Vergu, Null polygonal Wilson loops in full N = 4 superspace, J. Phys. A 45 (2012) 265402 [arXiv:1203.1443] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    Z. Bern, L. Dixon, D. Kosower, R. Roiban, M. Spradlin et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Beilinson, Height pairing between algebraic cycles, in K-theory, arithmetic and geometry, Y.I. Manin ed., Springer, Berlin Germany (1987).Google Scholar
  49. [49]
    P. Deligne and A.B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. 38 (2005) 1.MATHMathSciNetGoogle Scholar
  50. [50]
    S.J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, American Mathematical Society, Providence U.S.A. (2000).MATHGoogle Scholar
  51. [51]
    A. Suslin, K 3 of a field and the Bloch group, Proc. Steklov Inst. Math. 183 (1990) 217.MATHMathSciNetGoogle Scholar
  52. [52]
    D. Zagier, Polylogarithms, Dedekind zeta functions, and the algebraic K-theory of fields, in Arithmetic algebraic geometry, J.L. Colliot-Thelene et al., Boston U.S.A. (1991).Google Scholar
  53. [53]
    A.B. Goncharov, Polylogarithms and motivic Galois groups, in Motives (Seattle, WA, 1991), American Mathematical Sociesty, Providence U.S.A. (1994).Google Scholar
  54. [54]
    A. Goncharov, Deningers conjecture on L-functions of elliptic curves at s = 3, J. Math. Sci., New York 81 (1996) 2631 [alg-geom/9512016].CrossRefMATHMathSciNetGoogle Scholar
  55. [55]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    S. Fomin and A. Zelevinsky, The Laurent phenomenon, Adv. Appl. Math. 28 (2002) 119.CrossRefMATHMathSciNetGoogle Scholar
  57. [57]
    J.S. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc. III Ser. 92 (2006) 345.CrossRefMATHGoogle Scholar
  58. [58]
    M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003) 899.MATHMathSciNetGoogle Scholar
  59. [59]
    B. Keller, Cluster algebras, quiver representations and triangulated categories, in Triangulated categories, Cambridge University Press, Cambridge U.K. (2010).Google Scholar
  60. [60]
    S. Fomin and N. Reading, Root systems and generalized associahedra, in Geometric combinatorics, American Mathematical Society, Providence U.S.A. (2007).Google Scholar
  61. [61]
    C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in N = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    P. Heslop and V.V. Khoze, Wilson loops 3-loops in special kinematics, JHEP 11 (2011) 152 [arXiv:1109.0058] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    T. Goddard, P. Heslop and V.V. Khoze, Uplifting amplitudes in special kinematics, JHEP 10 (2012) 041 [arXiv:1205.3448] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L. Ferro, Differential equations for multi-loop integrals and two-dimensional kinematics, JHEP 04 (2013) 160 [arXiv:1204.1031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    J. Bartels, L. Lipatov and A. Prygarin, Collinear and Regge behavior of 2 → 4 MHV amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [INSPIRE].
  71. [71]
    A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All two-loop MHV amplitudes in multi-Regge kinematics from applied symbology, Phys. Rev. D 85 (2012) 085019 [arXiv:1112.6365] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Bartels, A. Kormilitzin, L. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].ADSGoogle Scholar
  73. [73]
    L. Lipatov, A. Prygarin and H.J. Schnitzer, The multi-Regge limit of NMHV amplitudes in N =4 SYM theory, JHEP 01 (2013) 068 [arXiv:1205.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Pennington, The six-point remainder function to all loop orders in the multi-Regge limit, JHEP 01 (2013) 059 [arXiv:1209.5357] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  77. [77]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix at finite coupling, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  81. [81]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N =4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  82. [82]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, JHEP 09 (2011) 032 [arXiv:0911.4708] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  83. [83]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetGoogle Scholar
  84. [84]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for scattering amplitudes and spectral regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    V. Del Duca et al., The one-loop six-dimensional hexagon integral with three massive corners, Phys. Rev. D 84 (2011) 045017 [arXiv:1105.2011] [INSPIRE].ADSGoogle Scholar
  86. [86]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  87. [87]
    M. Bullimore and D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056 [INSPIRE].
  88. [88]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  89. [89]
    C. Bogner and F. Brown, Symbolic integration and multiple polylogarithms, PoS(LL2012) 053 [arXiv:1209.6524] [INSPIRE].
  90. [90]
    A.E. Lipstein and L. Mason, From the holomorphic Wilson loop tod logloop-integrands for super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  91. [91]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  92. [92]
    J. Drummond et al., Leading singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  93. [93]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  94. [94]
    A. von Manteuffel and C. Studerus, Top quark pairs at two loops and Reduze 2, PoS(LL2012) 059 [arXiv:1210.1436] [INSPIRE].
  95. [95]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for g gZ g and g g, JHEP 04 (2013) 101 [arXiv:1302.2630] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  96. [96]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    C.F. Gauss, Pentagramma mirificum, in Werke, Band III, Göttingen Germany (1863).Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. K. Golden
    • 1
  • A. B. Goncharov
    • 2
  • M. Spradlin
    • 1
    • 3
  • C. Vergu
    • 4
  • A. Volovich
    • 1
    • 3
  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.
  2. 2.Department of MathematicsYale UniversityNew HavenU.S.A.
  3. 3.Theory Division, Physics Department, CERNGeneva 23Switzerland
  4. 4.ETH ZürichInstitut für Theoretische PhysikZürichSwitzerland

Personalised recommendations