Skip to main content

Non-Abelian vortices with an Aharonov-Bohm effect

Abstract

The interplay of gauge dynamics and flavor symmetries often leads to remarkably subtle phenomena in the presence of soliton configurations. Non-Abelian vortices — vortex solutions with continuous internal orientational moduli — provide an example. Here we study the effect of weakly gauging a U(1) R subgroup of the flavor symmetry on such BPS vortex solutions. Our prototypical setting consists of an SU(2) × U(1) gauge theory with N f = 2 sets of fundamental scalars that break the gauge symmetry to an “electromagnetic” U(1). The weak U(1) R gauging converts the well-known CP 1 orientation modulus |B| of the non-Abelian vortex into a parameter characterizing the strength of the magnetic field that is responsible for the Aharonov-Bohm effect. As the phase of B remains a genuine zero mode while the electromagnetic gauge symmetry is Higgsed in the interior of the vortex, these solutions are superconducting strings.

References

  1. [1]

    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. [2]

    R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Non-Abelian superconductors: Vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. [3]

    D. Tong, Monopoles in the Higgs phase, Phys. Rev. D 69 (2004) 065003 [hep-th/0307302] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, Non-Abelian monopoles and the vortices that confine them, Nucl. Phys. B 686 (2004) 119 [hep-th/0312233] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. [5]

    M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. [6]

    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, All exact solutions of a 1/4 Bogomolnyi-Prasad-Sommerfield equation, Phys. Rev. D 71 (2005) 065018 [hep-th/0405129] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    A. Gorsky, M. Shifman and A. Yung, Non-Abelian Meissner effect in Yang-Mills theories at weak coupling, Phys. Rev. D 71 (2005) 045010 [hep-th/0412082] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    S.B. Gudnason, Y. Jiang and K. Konishi, Non-Abelian vortex dynamics: effective world-sheet action, JHEP 08 (2010) 012 [arXiv:1007.2116] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  11. [11]

    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  12. [12]

    M. Eto et al., Non-Abelian vortices on cylinder: duality between vortices and walls, Phys. Rev. D 73 (2006) 085008 [hep-th/0601181] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. [13]

    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Manifestly supersymmetric effective Lagrangians on BPS solitons, Phys. Rev. D 73 (2006) 125008 [hep-th/0602289] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. [14]

    M. Eto et al., Non-Abelian Vortices of Higher Winding Numbers, Phys. Rev. D 74 (2006) 065021 [hep-th/0607070] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. [15]

    M. Eto et al., Non-Abelian duality from vortex moduli: a dual model of color-confinement, Nucl. Phys. B 780 (2007) 161 [hep-th/0611313] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. [16]

    M. Shifman and A. Yung, Non-Abelian semilocal strings in N = 2 supersymmetric QCD, Phys. Rev. D 73 (2006) 125012 [hep-th/0603134] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007) 105002 [arXiv:0704.2218] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. [18]

    M. Eto et al., Universal Reconnection of Non-Abelian Cosmic Strings, Phys. Rev. Lett. 98 (2007) 091602 [hep-th/0609214] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    D. Dorigoni, K. Konishi and K. Ohashi, Non-Abelian vortices with product moduli, Phys. Rev. D 79 (2009) 045011 [arXiv:0801.3284] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    M. Eto et al., Constructing Non-Abelian Vortices with Arbitrary Gauge Groups, Phys. Lett. B 669 (2008) 98 [arXiv:0802.1020] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  21. [21]

    M. Eto et al., Non-Abelian vortices in SO(N) and USp(N) gauge theories, JHEP 06 (2009) 004 [arXiv:0903.4471] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  22. [22]

    M. Eto et al., Group theory of non-Abelian vortices, JHEP 11 (2010) 042 [arXiv:1009.4794] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  23. [23]

    T. Fujimori, G. Marmorini, M. Nitta, K. Ohashi and N. Sakai, The Moduli Space Metric for Well-Separated Non-Abelian Vortices, Phys. Rev. D 82 (2010) 065005 [arXiv:1002.4580] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    M. Nitta and W. Vinci, Non-Abelian Monopoles in the Higgs Phase, Nucl. Phys. B 848 (2011) 121 [arXiv:1012.4057] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  25. [25]

    M. Cipriani, D. Dorigoni, S.B. Gudnason, K. Konishi and A. Michelini, Non-Abelian monopole-vortex complex, Phys. Rev. D 84 (2011) 045024 [arXiv:1106.4214] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    M. Eto et al., Vortices and monopoles in mass-deformed SO and USp gauge theories, JHEP 12 (2011) 017 [arXiv:1108.6124] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. [27]

    D. Tong, TASI lectures on solitons: instantons, monopoles, vortices and kinks, hep-th/0509216 [INSPIRE].

  28. [28]

    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    K. Konishi, The Magnetic Monopoles Seventy-Five Years Later, Lect. Notes Phys. 737 (2008) 471 [hep-th/0702102] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  30. [30]

    D. Tong, Quantum vortex strings: a review, Annals Phys. 324 (2009) 30 [arXiv:0809.5060] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. [31]

    M. Shifman and A. Yung, Supersymmetric Solitons and How They Help Us Understand Non-Abelian Gauge Theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  32. [32]

    M. Shifman and A. Yung, Supersymmetric solitons, Cambridge University Press, Cambridge U.K. (2009), pg. 259.

    Book  MATH  Google Scholar 

  33. [33]

    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    K. Konishi, M. Nitta and W. Vinci, Supersymmetry breaking on gauged non-Abelian vortices, JHEP 09 (2012) 014 [arXiv:1206.4546] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  35. [35]

    Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959) 485 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  36. [36]

    M.G. Alford and F. Wilczek, Aharonov-Bohm Interaction of Cosmic Strings with Matter, Phys. Rev. Lett. 62 (1989) 1071 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  37. [37]

    A. Balachandran, S. Digal and T. Matsuura, Semi-superfluid strings in high density QCD, Phys. Rev. D 73 (2006) 074009 [hep-ph/0509276] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    M. Eto and M. Nitta, Color Magnetic Flux Tubes in Dense QCD, Phys. Rev. D 80 (2009) 125007 [arXiv:0907.1278] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    E. Nakano, M. Nitta and T. Matsuura, Non-Abelian strings in high density QCD: zero modes and interactions, Phys. Rev. D 78 (2008) 045002 [arXiv:0708.4096] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    M. Eto, E. Nakano and M. Nitta, Effective world-sheet theory of color magnetic flux tubes in dense QCD, Phys. Rev. D 80 (2009) 125011 [arXiv:0908.4470] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    M. Eto, M. Nitta and N. Yamamoto, Instabilities of Non-Abelian Vortices in Dense QCD, Phys. Rev. Lett. 104 (2010) 161601 [arXiv:0912.1352] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    Y. Hirono and M. Nitta, Anisotropic optical response of dense quark matter under rotation: Compact stars as cosmic polarizers, Phys. Rev. Lett. 109 (2012) 062501 [arXiv:1203.5059] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    M. Cipriani, W. Vinci and M. Nitta, Colorful boojums at the interface of a color superconductor, Phys. Rev. D 86 (2012) 121704 [arXiv:1208.5704] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    W. Vinci, M. Cipriani and M. Nitta, Spontaneous Magnetization through Non-Abelian Vortex Formation in Rotating Dense Quark Matter, Phys. Rev. D 86 (2012) 085018 [arXiv:1206.3535] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    M. Eto, Y. Hirono, M. Nitta and S. Yasui, Vortices and Other Topological Solitons in Dense Quark Matter, to appear in PTEP, arXiv:1308.1535 [INSPIRE].

  46. [46]

    C.H. Taubes, Arbitrary N: Vortex Solutions to the First Order Landau-Ginzburg Equations, Commun. Math. Phys. 72 (1980) 277 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  47. [47]

    M. Eto and K. Ohashi, Small Winding Number Expansion and Numerical Calculation on Vortex Solutions, to appear.

  48. [48]

    E. Witten, Superconducting Strings, Nucl. Phys. B 249 (1985) 557 [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    R. Davis and E. Shellard, The Physics of Vortex Superconductivity. 2, Phys. Lett. B 209 (1988) 485 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  50. [50]

    R. Davis and E. Shellard, Cosmic vortons, Nucl. Phys. B 323 (1989) 209 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    G. ’t Hooft, Why Do We Need Local Gauge Invariance in Theories With Vector Particles? An Introduction, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 101 [INSPIRE].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenichi Konishi.

Additional information

ArXiv ePrint: 1310.1224

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Evslin, J., Konishi, K., Nitta, M. et al. Non-Abelian vortices with an Aharonov-Bohm effect. J. High Energ. Phys. 2014, 86 (2014). https://doi.org/10.1007/JHEP01(2014)086

Download citation

Keywords

  • Nonperturbative Effects
  • Spontaneous Symmetry Breaking
  • Duality in Gauge Field Theories
  • Sigma Models