Higgs phenomenology in the Peccei-Quinn invariant NMSSM

  • Kiwoon Choi
  • Sang Hui Im
  • Kwang Sik Jeong
  • Min-Seok Seo
Open Access
Article

Abstract

We study the Higgs phenomenology in the Peccei-Quinn invariant NMSSM (PQ-NMSSM) where the low energy mass parameters of the singlet superfield are induced by a spontaneous breakdown of the Peccei-Quinn symmetry. In the generic NMSSM, scalar mixing among CP-even Higgs bosons is constrained by the observed properties of the SM-like Higgs boson, as well as by the LEP bound on the chargino mass and the perturbativity bound on the singlet Yukawa coupling. In the minimal PQ-NMSSM, scalar mixing is further constrained due to the presence of a light singlino-like neutralino. It is noticed that the 2σ excess of the LEP \( Zb\overline{b} \) events at \( {m_{{b\overline{b}}}} \) ≃ 98 GeV can be explained by a singlet-like 98 GeV Higgs boson in the minimal PQ-NMSSM with low tan β, stops around or below 1 TeV, and light doublet-higgsinos around the weak scale.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H. Murayama, H. Suzuki and T. Yanagida, Radiative breaking of Peccei-Quinn symmetry at the intermediate mass scale, Phys. Lett. B 291 (1992) 418 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    D.H. Lyth and E.D. Stewart, Cosmology with a TeV mass GUT Higgs, Phys. Rev. Lett. 75 (1995) 201 [hep-ph/9502417] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Kim, W.-I. Park and E.D. Stewart, Thermal inflation, baryogenesis and axions, JHEP 01 (2009) 015 [arXiv:0807.3607] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Choi, K.S. Jeong, W.-I. Park and C.S. Shin, Thermal inflation and baryogenesis in heavy gravitino scenario, JCAP 11 (2009) 018 [arXiv:0908.2154] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  13. [13]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G.G. Ross, K. Schmidt-Hoberg and F. Staub, The generalised NMSSM at one loop: fine tuning and phenomenology, JHEP 08 (2012) 074 [arXiv:1205.1509] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    U. Ellwanger, Enhanced di-photon Higgs signal in the next-to-minimal supersymmetric standard model, Phys. Lett. B 698 (2011) 293 [arXiv:1012.1201] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. King, M. Mühlleitner, R. Nevzorov and K. Walz, Natural NMSSM Higgs bosons, Nucl. Phys. B 870 (2013) 323 [arXiv:1211.5074] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Badziak, M. Olechowski and S. Pokorski, New regions in the NMSSM with a 125 GeV Higgs, JHEP 06 (2013) 043 [arXiv:1304.5437] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C. Cheung, S.D. McDermott and K.M. Zurek, Inspecting the Higgs for new weakly interacting particles, JHEP 04 (2013) 074 [arXiv:1302.0314] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Barbieri, D. Buttazzo, K. Kannike, F. Sala and A. Tesi, Exploring the Higgs sector of a most natural NMSSM, Phys. Rev. D 87 (2013) 115018 [arXiv:1304.3670] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Barbieri, D. Buttazzo, K. Kannike, F. Sala and A. Tesi, One or more Higgs bosons?, Phys. Rev. D 88 (2013) 055011 [arXiv:1307.4937] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    K. Choi, E.J. Chun, H.D. Kim, W.I. Park and C.S. Shin, The μ-problem and axion in gauge mediation, Phys. Rev. D 83 (2011) 123503 [arXiv:1102.2900] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K.S. Jeong and M. Yamaguchi, Axion model in gauge-mediated supersymmetry breaking and a solution to the μ/Bμ problem, JHEP 07 (2011) 124 [arXiv:1102.3301] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K.S. Jeong, Y. Shoji and M. Yamaguchi, Peccei-Quinn invariant extension of the NMSSM, JHEP 04 (2012) 022 [arXiv:1112.1014] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.S. Jeong, Y. Shoji and M. Yamaguchi, Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM, JHEP 09 (2012) 007 [arXiv:1205.2486] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.J. Bae et al., Peccei-Quinn NMSSM in the light of 125 GeV Higgs, JHEP 11 (2012) 118 [arXiv:1208.2555] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Bélanger et al., Higgs bosons at 98 and 125 GeV at LEP and the LHC, JHEP 01 (2013) 069 [arXiv:1210.1976] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSGoogle Scholar
  38. [38]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Nakayama, N. Yokozaki and K. Yonekura, Relaxing the Higgs mass bound in singlet extensions of the MSSM, JHEP 11 (2011) 021 [arXiv:1108.4338] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Miller, R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t} \) + E(T)∗∗(miss) final state in 21fb − 1 of p-p collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
  45. [45]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in sqrts = 8 TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
  46. [46]
    CMS collaboration, Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at \( \sqrt{s} \) = 8 TeV, CMS-PAS-SUS-12-023 (2012).
  47. [47]
    A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: higgs couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Panagiotakopoulos and K. Tamvakis, New minimal extension of MSSM, Phys. Lett. B 469 (1999) 145 [hep-ph/9908351] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Panagiotakopoulos and A. Pilaftsis, Higgs scalars in the minimal nonminimal supersymmetric standard model, Phys. Rev. D 63 (2001) 055003 [hep-ph/0008268] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phenomenology of a new minimal supersymmetric extension of the standard model, Phys. Rev. D 63 (2001) 055009 [hep-ph/0009125] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Menon, D. Morrissey and C. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C. Balázs, M.S. Carena, A. Freitas and C. Wagner, Phenomenology of the NMSSM from colliders to cosmology, JHEP 06 (2007) 066 [arXiv:0705.0431] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Cao, H.E. Logan and J.M. Yang, Experimental constraints on NMSSM and implications on its phenomenology, Phys. Rev. D 79 (2009) 091701 [arXiv:0901.1437] [INSPIRE].ADSGoogle Scholar
  55. [55]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt{s} \) = 192GeV to 209GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  57. [57]
    G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  58. [58]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  60. [60]
    P. Gambino and M. Misiak, Quark mass effects in \( \overline{B} \) → X(sγ), Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Kiwoon Choi
    • 1
  • Sang Hui Im
    • 2
  • Kwang Sik Jeong
    • 3
  • Min-Seok Seo
    • 4
  1. 1.Department of Physics, KAISTDaejeonKorea
  2. 2.Department of Physics and Astronomy and Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  3. 3.Department of PhysicsTohoku UniversitySendaiJapan
  4. 4.Asia Pacific Center for Theoretical PhysicsPohangKorea

Personalised recommendations