Scalar boundary conditions in Lifshitz spacetimes

  • Cynthia KeelerEmail author
Open Access


We investigate the conditions imposable on a scalar field at the boundary of the so-called Lifshitz spacetime which has been proposed as the dual to Lifshitz field theories. For effective mass squared between −(d + z − 1)2 /4 and z 2 − (d + z − 1)2 /4, we find a one-parameter choice of boundary condition type. The bottom end of this range corresponds to a Breitenlohner-Freedman bound; below it, the Klein-Gordon operator need not be positive, so we cannot make sense of the dynamics. Above the top end of the range, only one boundary condition type is available; here we expect compact initial data will remain compact in the future.


Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Guica, A Fefferman-Graham-like expansion for null warped AdS 3, arXiv:1111.6978 [INSPIRE].
  4. [4]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    P. Hořava and C.M. Melby-Thompson, Anisotropic conformal infinity, Gen. Rel. Grav. 43 (2011) 1391 [arXiv:0909.3841] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi renormalization for Lifshitz spacetime, JHEP 01 (2012) 058 [arXiv:1107.5562] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.B. Mann and R. McNees, Holographic renormalization for asymptotically Lifshitz spacetimes, JHEP 10 (2011) 129 [arXiv:1107.5792] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    C. Hoyos and P. Koroteev, On the null energy condition and causality in Lifshitz holography, Phys. Rev. D 82 (2010) 084002 [Erratum ibid. D 82 (2010) 109905] [arXiv:1007.1428] [INSPIRE].
  12. [12]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 2. General analysis of prescriptions for dynamics, Class. Quant. Grav. 20 (2003) 3815 [gr-qc/0305012] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    R.M. Wald, Dynamics in nonglobally hyperbolic, static space-times, J. Math. Phys. 21 (1980) 2802 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A.J. Amsel and D. Marolf, Energy bounds in designer gravity, Phys. Rev. D 74 (2006) 064006 [Erratum ibid. D 75 (2007) 029901] [hep-th/0605101] [INSPIRE].
  16. [16]
    T. Andrade and S.F. Ross, Boundary conditions for scalars in Lifshitz, Class. Quant. Grav. 30 (2013) 065009 [arXiv:1212.2572] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    T. Andrade and S.F. Ross, Boundary conditions for metric fluctuations in Lifshitz, Class. Quant. Grav. 30 (2013) 195017 [arXiv:1305.3539] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. Moroz, Below the Breitenlohner-Freedman bound in the nonrelativistic AdS/CFT correspondence, Phys. Rev. D 81 (2010) 066002 [arXiv:0911.4060] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M.E. Goldstein and W.H. Braun, Advanced methods for the solution of differential equations, Lewis Research Center, Cleveland U.S.A. (1973).Google Scholar
  20. [20]
    T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz gravity for Lifshitz holography, Phys. Rev. Lett. 110 (2013) 081602 [arXiv:1211.4872] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations