Advertisement

Vector condensate and AdS soliton instability induced by a magnetic field

  • Rong-Gen Cai
  • Li LiEmail author
  • Li-Fang Li
  • You Wu
Open Access
Article

Abstract

We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied magnetic field can lead to the condensate of the vector field and the AdS soliton instability. As a result, a vortex lattice structure forms in the spatial directions perpendicular to the applied magnetic field. As a comparison, we also discuss the vector condensate in the Einstein-SU(2) Yang-Mills theory and find that in the setup of the present paper, the Einstein-Maxwell-complex vector field model is a generalization of the SU(2) model in the sense that the vector field has a general mass and gyromagnetic ratio.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  4. [4]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  6. [6]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Aprile, D. Rodriguez-Gomez and J.G. Russo, p-wave holographic superconductors and five-dimensional gauged supergravity, JHEP 01 (2011) 056 [arXiv:1011.2172] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R.-G. Cai, S. He, L. Li and L.-F. Li, A holographic study on vector condensate induced by a magnetic field, JHEP 12 (2013) 036 [arXiv:1309.2098] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.-G. Cai, L. Li and L.-F. Li, A holographic p-wave superconductor model, arXiv:1309.4877 [INSPIRE].
  13. [13]
    J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards a holographic model of D-wave superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D.E. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, ’Strongly interacting matter in magnetic fields: an overview, Lect. Notes Phys. 871 (2013) 1 [arXiv:1211.6245] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M.N. Chernodub, Superconductivity of QCD vacuum in strong magnetic field, Phys. Rev. D 82 (2010) 085011 [arXiv:1008.1055] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.N. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model, Phys. Rev. Lett. 106 (2011) 142003 [arXiv:1101.0117] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Chernodub, J. Van Doorsselaere and H. Verschelde, Electromagnetically superconducting phase of vacuum in strong magnetic field: structure of superconductor and superfluid vortex lattices in the ground state, Phys. Rev. D 85 (2012) 045002 [arXiv:1111.4401] [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Callebaut, D. Dudal and H. Verschelde, Holographic ρ mesons in an external magnetic field, JHEP 03 (2013) 033 [arXiv:1105.2217] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Callebaut and D. Dudal, On the transition temperature(s) of magnetized two-flavour holographic QCD, Phys. Rev. D 87 (2013) 106002 [arXiv:1303.5674] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Callebaut and D. Dudal, A magnetic instability of the non-Abelian Sakai-Sugimoto model, arXiv:1309.5042 [INSPIRE].
  22. [22]
    Y.-Y. Bu, J. Erdmenger, J.P. Shock and M. Strydom, Magnetic field induced lattice ground states from holography, JHEP 03 (2013) 165 [arXiv:1210.6669] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Wong, A non-abelian vortex lattice in strongly coupled systems, JHEP 10 (2013) 148 [arXiv:1307.7839] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G.T. Horowitz and B. Way, Complete phase diagrams for a holographic superconductor/insulator system, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y. Peng, Q. Pan and B. Wang, Various types of phase transitions in the AdS soliton background, Phys. Lett. B 699 (2011) 383 [arXiv:1104.2478] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.-G. Cai, S. He, L. Li and L.-F. Li, Entanglement entropy and Wilson loop in Stückelberg holographic insulator/superconductor model, JHEP 10 (2012) 107 [arXiv:1209.1019] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Akhavan and M. Alishahiha, P-wave holographic insulator/superconductor phase transition, Phys. Rev. D 83 (2011) 086003 [arXiv:1011.6158] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R.-G. Cai, L. Li, L.-F. Li and R.-K. Su, Entanglement entropy in holographic p-wave superconductor/insulator model, JHEP 06 (2013) 063 [arXiv:1303.4828] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Albash and C.V. Johnson, A holographic superconductor in an external magnetic field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    R.-G. Cai, L. Li, H.-Q. Zhang and Y.-L. Zhang, Magnetic field effect on the phase transition in AdS soliton spacetime, Phys. Rev. D 84 (2011) 126008 [arXiv:1109.5885] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.A. Young and S.A. Bludman, Electromagnetic properties of a charged vector meson, Phys. Rev. 131 (1963) 2326 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Djukanovic, M.R. Schindler, J. Gegelia and S. Scherer, Quantum electrodynamics for vector mesons, Phys. Rev. Lett. 95 (2005) 012001 [hep-ph/0505180] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black hole instability induced by a magnetic field, Phys. Lett. B 706 (2011) 94 [arXiv:1106.4551] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Ambjørn and P. Olesen, Antiscreening of large magnetic fields by vector bosons, Phys. Lett. B 214 (1988) 565 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Rasolt, Superconductivity in high magnetic fields, Phys. Rev. Lett. 58 (1987) 1482.ADSCrossRefGoogle Scholar
  38. [38]
    M. Rasolt and Z. Tesanovic, Theoretical aspects of superconductivity in very high magnetic fields, Rev. Mod. Phys. 64 (1992) 709 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Klimenko, R. Zhokhov and V.C. Zhukovsky, Superconductivity phenomenon induced by external in-plane magnetic field in (2 + 1)-dimensional Gross-Neveu type model, Mod. Phys. Lett. A 28 (2013) 1350096 [arXiv:1211.0148] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    P. Olesen, Anti-screening ferromagnetic superconductivity, arXiv:1311.4519 [INSPIRE].
  41. [41]
    F. Levy, I. Sheikin, B. Grenier and A. Huxley, Magnetic field-induced superconductivity in the ferromagnet URhGe, Science 309 (2005) 1343.ADSCrossRefGoogle Scholar
  42. [42]
    S. Uji et al., Magnetic-field-induced superconductivity in a two-dimensional organic conductor, Nature 410 (2010) 908.ADSCrossRefGoogle Scholar
  43. [43]
    R.-G. Cai, L. Li, L.-F. Li and Y.-Q. Wang, Competition and coexistence of order parameters in holographic multi-band superconductors, JHEP 09 (2013) 074 [arXiv:1307.2768] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    L.-F. Li, R.-G. Cai, L. Li and C. Shen, Entanglement entropy in a holographic p-wave superconductor model, arXiv:1310.6239 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Space Weather, Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina
  3. 3.Department of physicsRenmin University of ChinaBeijingChina

Personalised recommendations