Study of forward Z + jet production in pp collisions at \( \sqrt{s} \) = 7 TeV


A measurement of the Z(→ μ + μ ) + jet production cross-section in pp collisions at a centre-of-mass energy \( \sqrt{s} \) = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0 fb−1 recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0 < η < 4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.


  1. [1]

    R. Thorne, A. Martin, W. Stirling and G. Watt, Parton distributions and QCD at LHCb, arXiv:0808.1847 [INSPIRE].

  2. [2]

    LHCb collaboration, Inclusive W and Z production in the forward region at \( \sqrt{s} \) = 7 TeV, JHEP 06 (2012) 058 [arXiv:1204.1620] [INSPIRE].

    Google Scholar 

  3. [3]

    LHCb collaboration, Measurement of the cross-section for Ze + e production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 02 (2013) 106 [arXiv:1212.4620] [INSPIRE].

    Google Scholar 

  4. [4]

    LHCb collaboration, A study of the Z production cross-section in pp collisions at \( \sqrt{s} \) = 7 TeV using tau final states, JHEP 01 (2013) 111 [arXiv:1210.6289] [INSPIRE].

    Google Scholar 

  5. [5]

    S.A. Malik and G. Watt, Ratios of W and Z cross sections at large boson p T as a constraint on PDFs and background to new physics, arXiv:1304.2424 [INSPIRE].

  6. [6]

    ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    CMS collaboration, Event shapes and azimuthal correlations in Z + jets events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 722 (2013) 238 [arXiv:1301.1646] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    CMS collaboration, Rapidity distributions in exclusive Z + jet and photon + jet events in pp collisions at \( \sqrt{s} \) = 7 TeV, arXiv:1310.3082 [INSPIRE].

  9. [9]

    F. Hautmann, M. Hentschinski and H. Jung, Forward Z-boson production and the unintegrated sea quark density, Nucl. Phys. B 865 (2012) 54 [arXiv:1205.1759] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P.B. Arnold and M.H. Reno, The complete computation of high p T W and Z production in 2nd order QCD, Nucl. Phys. B 319 (1989) 37 [Erratum ibid. B 330 (1990) 284] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    W. Giele, E.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    J.M. Campbell and R. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  20. [20]

    M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Alves Jr. et al., Performance of the LHCb muon system, 2013 JINST 8 P02022 [arXiv:1211.1346] [INSPIRE].

  22. [22]

    R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].

  23. [23]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl Sci. Symp. Conf. Rec. (2010) 1155.

  25. [25]

    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

    ADS  Article  Google Scholar 

  29. [29]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A. Jaeger et al., Measurement of the track finding efficiency, LHCb-PUB-2011-025 (2011).

  33. [33]

    G. D’Agostini, A multidimensional unfolding method based on Bayestheorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    T. Adye, Unfolding algorithms and tests using RooUnfold, in PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, January 17-20, CERN, Geneva, Switzerland (2011), arXiv:1105.1160 [INSPIRE].

  35. [35]

    A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A 372 (1996) 469 [hep-ph/9509307] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    LHCb collaboration, R. Aaij et al., Absolute luminosity measurements with the LHCb detector at the LHC, 2012 JINST 7 P01010 [arXiv:1110.2866] [INSPIRE].

  37. [37]

    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information