Journal of High Energy Physics

, 2013:189 | Cite as

Lifshitz-like solutions with hyperscaling violation in ungauged supergravity

  • P. Bueno
  • W. Chemissany
  • P. Meessen
  • T. Ortín
  • C. S. Shahbazi
Article

Abstract

In this note we describe several procedures to construct, from known black-hole and black-brane solutions of any ungauged supergravity theory, non-trivial gravitational solutions whose “near-horizon” and “near-singularity” limits are Lifshitz-like spacetimes with dynamical critical exponent z, “hyperscaling violation” exponent θ and Lifshitz radius that depends on the physical parameters of the original black-hole solution. Since the new Lifshitz-like solutions can be constructed from any black-hole solution of any ungauged supergravity, many of them can be easily embedded in String Theory. Some of the procedures produce supersymmetric Lifshitz-like solutions.

Keywords

p-branes Black Holes in String Theory D-branes Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  3. [3]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  4. [4]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSGoogle Scholar
  6. [6]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Ammon, M. Kaminski and A. Karch, Hyperscaling-violation on probe D-branes, JHEP 11 (2012) 028 [arXiv:1207.1726] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  13. [13]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetMATHGoogle Scholar
  14. [14]
    I. Amado and A.F. Faedo, Lifshitz black holes in string theory, JHEP 07 (2011) 004 [arXiv:1105.4862] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L. Barclay, R. Gregory, S. Parameswaran, G. Tasinato and I. Zavala, Lifshitz black holes in IIA supergravity, JHEP 05 (2012) 122 [arXiv:1203.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Chemissany and J. Hartong, From D3-branes to Lifshitz space-times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Alishahiha, E. Ó Colgáin and H. Yavartanoo, Charged black branes with hyperscaling violating factor, preprint IPM/P-2012/050 [FPAUO-12/12] [arXiv:1209.3946] [INSPIRE].
  19. [19]
    G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].
  21. [21]
    N. Bao, X. Dong, S. Harrison and E. Silverstein, The benefits of stress: resolution of the Lifshitz singularity, Phys. Rev. D 86 (2012) 106008 [arXiv:1207.0171] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions, JHEP 07 (2012) 163 [arXiv:1112.2876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    P. Meessen, T. Ortín, J. Perz and C. Shahbazi, H-FGK formalism for black-hole solutions of N = 2, D = 4 and D = 5 supergravity, Phys. Lett. B 709 (2012) 260 [arXiv:1112.3332] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Hübscher, P. Meessen and T. Ortín, Supersymmetric solutions of N = 2 D = 4 SUGRA: the whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. Meessen, T. Ortín, J. Perz and C. Shahbazi, Black holes and black strings of N = 2, D = 5 supergravity in the H-FGK formalism, JHEP 09 (2012) 001 [arXiv:1204.0507] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. de Antonio Martín, T. Ortín and C. Shahbazi, The FGK formalism for black p-branes in d dimensions, JHEP 05 (2012) 045 [arXiv:1203.0260] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P. Meessen and T. Ortín, Non-extremal black holes of N = 2, D = 5 supergravity, Phys. Lett. B 707 (2012) 178 [arXiv:1107.5454] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSGoogle Scholar
  32. [32]
    G. Lopes Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, STU black holes unveiled, Entropy 10 (2008) 507 [arXiv:0807.3503] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • P. Bueno
    • 1
  • W. Chemissany
    • 2
  • P. Meessen
    • 3
  • T. Ortín
    • 1
  • C. S. Shahbazi
    • 1
    • 4
  1. 1.Instituto de Física Teórica UAM/CSICMadridSpain
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  3. 3.HEP Theory Group, Departamento de FísicaUniversidad de OviedoOviedoSpain
  4. 4.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations