Journal of High Energy Physics

, 2013:182 | Cite as

Scrutinizing the Higgs signal and background in the 2e2μ golden channel

  • Yi ChenEmail author
  • Nhan Tran
  • Roberto Vega-MoralesEmail author
Open Access


Kinematic distributions in the decays of the newly discovered resonance to four leptons are a powerful probe of the tensor structure of its couplings to electroweak gauge bosons. We present analytic calculations for both signal and background of the fully differential cross section for the ‘Golden Channel’ e + e μ + μ final state. We include all interference effects between intermediate gauge bosons and allow them to be on- or off-shell. For the signal we compute the fully differential decay width for general scalar couplings to ZZ,γγ,andZγ. For the background we compute the leading order fully differential cross section for q q annihilation into Z and γ gauge bosons, including the contribution from the resonant Z → 2e2μ process. We also present singly and doubly differential projections and study the interference effects on the differential spectra. These expressions can be used in a variety of ways to uncover the nature of the newly discovered resonance or any new scalars decaying to neutral gauge bosons which might be discovered in the future.


Higgs Physics Standard Model 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  8. [8]
    D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Gunion and Z. Kunszt, Lepton correlations in gauge boson pair production and decay, Phys. Rev. D 33 (1986) 665 [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Soni and R. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993)5259 [hep-ph/9301225] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Choi, . Miller, D.J., M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Matsuura and J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].Google Scholar
  13. [13]
    C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H\to ZZ\to l_1^{+}l_1^{-}l_2^{+}l_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Fiedler, A. Grohsjean, P. Haefner and P. Schieferdecker, The matrix element method and its application in measurements of the top quark mass, Nucl. Instrum. Meth. A 624 (2010) 203 [arXiv:1003.1316] [INSPIRE].ADSGoogle Scholar
  15. [15]
    I. Volobouev, Matrix element method in HEP: transfer functions, efficiencies and likelihood normalization, arXiv:1101.2259 [INSPIRE].
  16. [16]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, arXiv:1207.6082 [INSPIRE].
  17. [17]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Avery, D. Bourilkov, M. Chen, T. Cheng, A. Drozdetskiy, et al., Precision studies of the Higgs golden channel HZZ → 4l. Part I. Kinematic discriminants from leading order matrix elements, arXiv:1210.0896 [INSPIRE].
  19. [19]
    J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].
  20. [20]
    J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Q.-H. Cao, C. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel,Phys. Rev. D 86(2012)033010[arXiv:1112.1405][INSPIRE].ADSGoogle Scholar
  24. [24]
    B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].ADSGoogle Scholar
  25. [25]
    I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B.A. Dobrescu and J.D. Lykken, Semileptonic decays of the standard Higgs boson, JHEP 04 (2010)083 [arXiv:0912.3543] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  28. [28]
    N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    CMS collaboration, Observation of Z decays to four leptons with the CMS detector at the LHC, JHEP 12 (2012) 034 [arXiv:1210.3844] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Zecher, T. Matsuura and J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to l\overline{l}{l^{\prime }}{{\overline{l}}^{-}} \) -prime, arXiv:0807.0024 [INSPIRE].
  32. [32]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Jamin and M.E. Lautenbacher, TRACER: version 1.1: a Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Physics DepartmentCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Fermi National Accelerator Laboratory (FNAL)BataviaU.S.A.
  3. 3.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations