Advertisement

Journal of High Energy Physics

, 2013:181 | Cite as

Gauge mediation models with vectorlike matters at the LHC

  • Motoi Endo
  • Koichi Hamaguchi
  • Kazuya Ishikawa
  • Sho Iwamoto
  • Norimi Yokozaki
Article

Abstract

Gauge mediation model with vectorlike matters (V-GMSB) is one of the few viable SUSY models that explains the 126GeV Higgs boson mass and the muon anomalous magnetic moment simultaneously. We explore exclusion bounds on V-GMSB model from latest LHC SUSY searches.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSGoogle Scholar
  5. [5]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSGoogle Scholar
  7. [7]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Goncharov, A.D. Linde and M. Vysotsky, Cosmological problems for spontaneously broken supergravity, Phys. Lett. B 147 (1984) 279 [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.R. Ellis, D.V. Nanopoulos and M. Quirós, On the axion, dilaton, Polonyi, gravitino and shadow matter problems in supergravity and superstring models, Phys. Lett. B 174 (1986) 176 [INSPIRE].ADSGoogle Scholar
  12. [12]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and \( {\alpha_{\mathrm{QED}}}\left( {M_Z^2} \right) \) , Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g − 2 of the muon and Δα, Chin. Phys. C 34 (2010) 728 [arXiv:1001.5401] [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Davier et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e → π+π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to αMZ , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Prades, E. de Rafael and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:0901.0306 [INSPIRE].
  21. [21]
    E. de Rafael, Update of the electron and muon g-factors, arXiv:1210.4705 [INSPIRE].
  22. [22]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    QCDSF collaboration, M. Gockeler et al., Vacuum polarization and hadronic contribution to muon g − 2 from lattice QCD, Nucl. Phys. B 688 (2004) 135 [hep-lat/0312032] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].ADSGoogle Scholar
  25. [25]
    X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice determination of the hadronic contribution to the muon g − 2 using dynamical domain wall fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Della Morte, B. Jager, A. Juttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2)μ , JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, An update of the HLS estimate of the muon g − 2, arXiv:1210.7184 [INSPIRE].
  29. [29]
    Fermilab P989 collaboration, The Fermilab muon (g − 2) project, Nucl. Phys. Proc. Suppl. 218 (2011) 237.CrossRefGoogle Scholar
  30. [30]
    J-PARC New g-2/EDM experiment collaboration, H. Iinuma, New approach to the muon g−2 and EDM experiment at J-PARC, J. Phys. Conf. Ser. 295 (2011) 012032 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].ADSGoogle Scholar
  32. [32]
    U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g−2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.L. Evans, M. Ibe and T.T. Yanagida, Probing extra matter in gauge mediation through the lightest Higgs boson mass, arXiv:1108.3437 [INSPIRE].
  38. [38]
    S.P. Martin and J.D. Wells, Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ∼ 125 GeV Higgs boson, Phys. Rev. D 86 (2012) 035017 [arXiv:1206.2956] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy squarks and light sleptons in gauge mediation from the viewpoint of 125 GeV Higgs boson and muon g − 2, arXiv:1210.3122 [INSPIRE].
  42. [42]
    R. Sato, K. Tobioka and N. Yokozaki, Enhanced diphoton signal of the Higgs boson and the muon g − 2 in gauge mediation models, Phys. Lett. B 716 (2012) 441 [arXiv:1208.2630] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Moroi and Y. Okada, Radiative corrections to Higgs masses in the supersymmetric model with an extra family and antifamily, Mod. Phys. Lett. A 7 (1992) 187 [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Moroi and Y. Okada, Upper bound of the lightest neutral Higgs mass in extended supersymmetric standard models, Phys. Lett. B 295 (1992) 73 [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].ADSGoogle Scholar
  47. [47]
    K. Nakayama and N. Yokozaki, Peccei-Quinn extended gauge-mediation model with vector-like matter, JHEP 11 (2012) 158 [arXiv:1204.5420] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  49. [49]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  50. [50]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  55. [55]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Vacuum stability bound on extended GMSB models, JHEP 06 (2012) 060 [arXiv:1202.2751] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, arXiv:1211.6136 [INSPIRE].
  59. [59]
    M. Endo, K. Hamaguchi and K. Nakaji, Probing high reheating temperature scenarios at the LHC with long-lived staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Endo, K. Hamaguchi and K. Nakaji, LHC signature with long-lived stau in high reheating temperature scenario, arXiv:1105.3823 [INSPIRE].
  61. [61]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  62. [62]
  63. [63]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  64. [64]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    ATLAS collaboration, Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 718 (2013) 1284 [arXiv:1210.5468] [INSPIRE].ADSGoogle Scholar
  67. [67]
    K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the top partner at the LHC using multi-b-jet channels, Phys. Rev. D 86 (2012) 015005 [arXiv:1204.2317] [INSPIRE].ADSGoogle Scholar
  68. [68]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).Google Scholar
  69. [69]
    CMS collaboration, Search for supersymmetry in hadronic final states using M T 2 in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar
  70. [70]
    CMS collaboration, S. Chatrchyan et al., Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  74. [74]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  77. [77]
    ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE].ADSGoogle Scholar
  78. [78]
    ATLAS collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063 (2011).
  79. [79]
    CMS collaboration, Search for heavy long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE].ADSGoogle Scholar
  80. [80]
    ATLAS collaboration, Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1211.1597 [INSPIRE].
  81. [81]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J. Alwall, K. Hiramatsu, M.M. Nojiri and Y. Shimizu, Novel reconstruction technique for New Physics processes with initial state radiation, Phys. Rev. Lett. 103 (2009) 151802 [arXiv:0905.1201] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336–337] [hep-ph/0012052] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].ADSGoogle Scholar
  88. [88]
    J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [INSPIRE].ADSGoogle Scholar
  89. [89]
    V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].ADSGoogle Scholar
  90. [90]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].ADSGoogle Scholar
  91. [91]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflationary universe, Phys. Rev. D 61 (2000) 083512 [hep-ph/9907559] [INSPIRE].ADSGoogle Scholar
  92. [92]
    K. Hamaguchi, H. Murayama and T. Yanagida, Leptogenesis from N dominated early universe, Phys. Rev. D 65 (2002) 043512 [hep-ph/0109030] [INSPIRE].ADSGoogle Scholar
  93. [93]
    M. Endo, F. Takahashi and T. Yanagida, Inflaton decay in supergravity, Phys. Rev. D 76 (2007) 083509 [arXiv:0706.0986] [INSPIRE].MathSciNetADSGoogle Scholar
  94. [94]
    T. Moroi, T.T. Yanagida and N. Yokozaki, Enhanced Higgs mass in a gaugino mediation model without the Polonyi problem, arXiv:1211.4676 [INSPIRE].
  95. [95]
    K. Hamaguchi, R. Kitano and F. Takahashi, Non-thermal gravitino dark matter in gauge mediation, JHEP 09 (2009) 127 [arXiv:0908.0115] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    H. Fukushima, R. Kitano and F. Takahashi, Cosmologically viable gauge mediation, arXiv:1209.1531 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Motoi Endo
    • 1
    • 2
  • Koichi Hamaguchi
    • 1
    • 2
  • Kazuya Ishikawa
    • 1
  • Sho Iwamoto
    • 1
  • Norimi Yokozaki
    • 2
  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)University of TokyoChibaJapan

Personalised recommendations