Journal of High Energy Physics

, 2013:178 | Cite as

N = 1 superconformal blocks with Ramond fields from AGT correspondence

Article

Abstract

We use AGT correspondence between N = 2 SUSY Yang-Mills theory on \( {{\mathbb{R}}^4}/{{\mathbb{Z}}_2} \) and two-dimensional CFT model with the algebra \( \mathcal{H} \)\( \widehat{s}l \) (2)2 ⨁ NSR to obtain the explicit expressions for 4-point NSR conformal blocks including Ramond fields in terms of Nekrasov partition functions and correlation functions of \( \widehat{s}l \) (2)2 WZW model.

Keywords

Conformal and W Symmetry Supersymmetric gauge theory 

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N ) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Belavin, V. Belavin and M. Bershtein, Instantons and 2d superconformal field theory, JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and super Liouville conformal field theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge theories on ALE space and super Liouville correlation functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    N. Wyllard, Coset conformal blocks and N = 2 gauge theories, arXiv:1109.4264 [INSPIRE].
  10. [10]
    M. Alfimov and G. Tarnopolsky, Parafermionic Liouville field theory and instantons on ALE spaces, JHEP 02 (2012) 036 [arXiv:1110.5628] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Belavin and N. Wyllard, N = 2 superconformal blocks and instanton partition functions, JHEP 06 (2012) 173 [arXiv:1205.3091] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Belavin, Conformal blocks of Chiral fields in N = 2 SUSY CFT and Affine Laumon Spaces, JHEP 10 (2012) 156 [arXiv:1209.2992] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Ito, Ramond sector of super Liouville theory from instantons on an ALE space, Nucl. Phys. B 861 (2012) 387 [arXiv:1110.2176] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math. 145 (1997) 379 [alg-geom/9507012].MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. 91 (1998) 515.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    M. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    F. Fucito, J.F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, Nucl. Phys. B 703 (2004) 518 [hep-th/0406243] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Belavin, M. Bershtein, B. Feigin, A. Litvinov and G. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, arXiv:1111.2803 [INSPIRE].
  21. [21]
    U. Bruzzo, R. Poghossian and A. Tanzini, Poincaré polynomial of moduli spaces of framed sheaves on (stacky) Hirzebruch surfaces, Commun. Math. Phys. 304 (2011) 395 [arXiv:0909.1458] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    V. Kac, Infinite-dimensional Lie Algebras, Cambridge University Press, Cambridge U.K. (1995).Google Scholar
  23. [23]
    P. Goddard, A. Kent and D.I. Olive, Unitary representations of the Virasoro and supervirasoro algebras, Commun. Math. Phys. 103 (1986) 105 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    V. Fateev and A. Zamolodchikov, Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems, Sov. Phys. JETP 62 (1985) 215 [INSPIRE].MathSciNetGoogle Scholar
  25. [25]
    A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    V. Belavin, N = 1 supersymmetric conformal block recursion relations, Theor. Math. Phys. 152 (2007) 1275 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursion representation of the Neveu-Schwarz superconformal block, JHEP 03 (2007) 032 [hep-th/0611266] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Elliptic recurrence representation of the N = 1 superconformal blocks in the Ramond sector, JHEP 11 (2008) 060 [arXiv:0810.1203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Suchanek, Elliptic recursion for 4-point superconformal blocks and bootstrap in N = 1 SLFT, JHEP 02 (2011) 090 [arXiv:1012.2974] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    E. Carlsson and A. Okounkov, Exts and Vertex Operators, arXiv:0801.2565.
  31. [31]
    V. Schomerus and P. Suchanek, Liouvilles Imaginary Shadow, arXiv:1210.1856 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.L.D. Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations