Journal of High Energy Physics

, 2013:169 | Cite as

A light stop with flavor in natural SUSY

  • Roberto Auzzi
  • Amit Giveon
  • Sven Bjarke Gudnason
  • Tomer Shacham


The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of the Standard Model motivate the investigation of supersymmetric quiver-like BSM extensions. We study the properties of such a minimal class of models which deals naturally with the SM parameters. Considering experimental bounds as well as constraints from flavor physics and Electro-Weak Precision Data, we find the following. In a self-contained minimal model — including the full dynamics of the Higgs sector — top squarks below a TeV are in tension with bsγ constraints. Relaxing the assumption concerning the mass generation of the heavy Higgses, we find that a stop not far from half a TeV is allowed. The models have some unique properties, e.g. an enhancement of the h\( b\overline{b} \) , \( \tau \overline{\tau} \) decays relative to the h → γγ one, a gluino about 3 times heavier than the stop, an inverted hierarchy of about 3 ÷ 20 between the squarks of the first two generations and the stop, relatively light Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W which may be within reach of the LHC.


Supersymmetry Phenomenology 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.R. Espinosa and R.-J. Zhang, MSSM lightest CP even Higgs boson mass to O(α s α t): the effective potential approach, JHEP 03 (2000) 026 [hep-ph/9912236] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).Google Scholar
  8. [8]
    ATLAS collaboration, Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1208.1447 [INSPIRE].
  9. [9]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, M.A. Luty and J. Terning, Composite quarks and leptons from dynamical supersymmetry breaking without messengers, Phys. Rev. D 58 (1998) 015004 [hep-ph/9712389] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Gabella, T. Gherghetta and J. Giedt, A gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N. Craig, R. Essig, S. Franco, S. Kachru and G. Torroba, Dynamical supersymmetry breaking, with flavor, Phys. Rev. D 81 (2010) 075015 [arXiv:0911.2467] [INSPIRE].ADSGoogle Scholar
  19. [19]
    O. Aharony, L. Berdichevsky, M. Berkooz, Y. Hochberg and D. Robles-Llana, Inverted sparticle hierarchies from natural particle hierarchies, Phys. Rev. D 81 (2010) 085006 [arXiv:1001.0637] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Delgado and M. Quirós, The least supersymmetric standard model, Phys. Rev. D 85 (2012) 015001 [arXiv:1111.0528] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012) 075009 [arXiv:1201.1293] [INSPIRE].ADSGoogle Scholar
  25. [25]
    N. Craig, M. McCullough and J. Thaler, The new flavor of higgsed gauge mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Larsen, Y. Nomura and H.L.L. Roberts, Supersymmetry with light stops, JHEP 06 (2012) 032 [arXiv:1202.6339] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Cohen, A. Hook and G. Torroba, An attractor for natural supersymmetry, Phys. Rev. D 86 (2012) 115005 [arXiv:1204.1337] [INSPIRE].ADSGoogle Scholar
  30. [30]
    L. Randall and M. Reece, Single-scale natural SUSY, arXiv:1206.6540 [INSPIRE].
  31. [31]
    P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, On the spectrum of direct gaugino mediation, JHEP 09 (2011) 108 [arXiv:1107.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Csáki, J. Erlich, C. Grojean and G.D. Kribs, 4D constructions of supersymmetric extra dimensions and gaugino mediation, Phys. Rev. D 65 (2002) 015003 [hep-ph/0106044] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H. Cheng, D. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation, Phys. Lett. B 515 (2001) 395 [hep-ph/0106098] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. McGarrie and R. Russo, General gauge mediation in 5D, Phys. Rev. D 82 (2010) 035001 [arXiv:1004.3305] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Green, A. Katz and Z. Komargodski, Direct gaugino mediation, Phys. Rev. Lett. 106 (2011) 061801 [arXiv:1008.2215] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. McGarrie, General gauge mediation and deconstruction, JHEP 11 (2010) 152 [arXiv:1009.0012] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Auzzi and A. Giveon, The sparticle spectrum in minimal gaugino-gauge mediation, JHEP 10 (2010) 088 [arXiv:1009.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Auzzi and A. Giveon, Superpartner spectrum of minimal gaugino-gauge mediation, JHEP 01 (2011) 003 [arXiv:1011.1664] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Sudano, General gaugino mediation, arXiv:1009.2086 [INSPIRE].
  45. [45]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Accelerated unification, hep-th/0108089 [INSPIRE].
  46. [46]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. De Simone, J. Fan, M. Schmaltz and W. Skiba, Low-scale gaugino mediation, lots of leptons at the LHC, Phys. Rev. D 78 (2008) 095010 [arXiv:0808.2052] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S.P. Martin, Generalized messengers of supersymmetry breaking and the sparticle mass spectrum, Phys. Rev. D 55 (1997) 3177 [hep-ph/9608224] [INSPIRE].ADSGoogle Scholar
  49. [49]
    R. Auzzi, A. Giveon and S.B. Gudnason, Mediation of supersymmetry breaking in quivers, JHEP 12 (2011) 016 [arXiv:1110.1453] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].Google Scholar
  52. [52]
    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSGoogle Scholar
  56. [56]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  57. [57]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, JHEP 08 (2012) 159 [arXiv:1103.6083] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  64. [64]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].ADSGoogle Scholar
  65. [65]
    Z. Han, Electroweak constraints on effective theories with U(2) × U(1) flavor symmetry, Phys. Rev. D 73 (2006) 015005 [hep-ph/0510125] [INSPIRE].ADSGoogle Scholar
  66. [66]
    CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713(2012) 68 [arXiv:1202.4083][INSPIRE].ADSGoogle Scholar
  67. [67]
    T. Hermann, M. Misiak and M. Steinhauser, BX s γ in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Misiak et al., Estimate of B(\( \overline{B} \)X s γ) at O(\( \alpha_s^2 \)), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    ATLAS collaboration, Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 715 (2012) 44 [arXiv:1204.6736] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Barnard, B. Farmer, T. Gherghetta and M. White, Natural gauge mediation with a bino NLSP at the LHC, Phys. Rev. Lett. 109 (2012) 241801 [arXiv:1208.6062] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J. Baglio, A. Djouadi and R. Godbole, The apparent excess in the Higgs to di-photon rate at the LHC: New Physics or QCD uncertainties?, Phys. Lett. B 716 (2012) 203 [arXiv:1207.1451] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, arXiv:1208.3436 [INSPIRE].
  75. [75]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Roberto Auzzi
    • 1
  • Amit Giveon
    • 1
  • Sven Bjarke Gudnason
    • 1
  • Tomer Shacham
    • 1
  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations