Journal of High Energy Physics

, 2013:167

High-energy suppression of the Higgsstrahlung cross section in the Minimal Composite Higgs Model

Article

Abstract

If the Higgs boson is composite, signs of this compositeness should appear via a formfactor-like suppression of Higgs scattering cross sections at momentum transfers above the compositeness scale. We explore this by computing the cross section for e+eZH (Higgsstrahlung) in a warped five-dimensional gauge-Higgs unification model known as the Minimal Composite Higgs Model (MCHM). We observe that the Higgsstrahlung cross section in the MCHM is strongly suppressed compared to that in the Standard Model at center-of-mass energies above the scale of the first Kaluza-Klein excitations, due to cancellations among the contributions of successive Z boson Kaluza-Klein modes. We also show that the magnitude and sign of the coupling of the first Kaluza-Klein mode can be measured at a future electron-positron collider such as the proposed International Linear Collider or Compact Linear Collider.

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  2. [2]
    LEP Electroweak Working Group webpage, http://lepewwg.web.cern.ch/LEPEWWG/, March 2012.
  3. [3]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093, CERN, Geneva Switzerland (2012) [INSPIRE].
  4. [4]
    CMS collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020, CERN, Geneva Switzerland (2012) [INSPIRE].
  5. [5]
    P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].ADSGoogle Scholar
  7. [7]
    P. Fayet, Weak interactions of a light gravitino: a lower limit on the gravitino mass from the decay ψ → gravitino + antiphotino, Phys. Lett. B 84 (1979) 421 [INSPIRE].ADSGoogle Scholar
  8. [8]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  10. [10]
    J. Kalinowski, SUSY theory review, Acta Phys. Polon. B 38 (2007) 0531 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Arkani-Hamed et al., The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    V. Miransky, M. Tanabashi and K. Yamawaki, Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate, Phys. Lett. B 221 (1989) 177 [INSPIRE].ADSGoogle Scholar
  16. [16]
    C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [INSPIRE].ADSGoogle Scholar
  17. [17]
    C.T. Hill, M.A. Luty and E.A. Paschos, Electroweak symmetry breaking by fourth generation condensates and the neutrino spectrum, Phys. Rev. D 43 (1991) 3011 [INSPIRE].ADSGoogle Scholar
  18. [18]
    W.J. Marciano, Exotic new quarks and dynamical symmetry breaking, Phys. Rev. D 21 (1980) 2425 [INSPIRE].ADSGoogle Scholar
  19. [19]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Appelquist and L. Wijewardhana, Chiral hierarchies from slowly running couplings in technicolor theories, Phys. Rev. D 36 (1987) 568 [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Piai, Lectures on walking technicolor, holography and gauge/gravity dualities, Adv. High Energy Phys. 2010 (2010) 464302 [arXiv:1004.0176] [INSPIRE].Google Scholar
  25. [25]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    H. Davoudiasl, B. Lillie and T.G. Rizzo, Off-the-wall Higgs in the universal Randall-Sundrum model, JHEP 08 (2006) 042 [hep-ph/0508279] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  29. [29]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phy s. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Carena, A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D. Fairlie, Two consistent calculations of the Weinberg angle, J. Phys. G 5 (1979) L55 [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Fairlie, Higgsfields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979) 97 [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Forgacs and N. Manton, Space-time symmetries in gauge theories, Commun. Math. Phys. 72 (1980) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    D. Kapetanakis and G. Zoupanos, Coset space dimensional reduction of gauge theories, Phys. Rept. 219 (1992) 4 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  45. [45]
    Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Falkowski, About the holographic pseudo-Goldstone boson, Phys. Rev. D 75 (2007) 025017 [hep-ph/0610336] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    N. Arkani-Hamed, Y. Grossman and M. Schmaltz, Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev. D 61 (2000) 115004 [hep-ph/9909411] [INSPIRE].ADSGoogle Scholar
  50. [50]
    H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5, JHEP 11 (2001) 003 [hep-th/0108114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    T. Gherghetta, Les Houches lectures on warped models and holography, hep-ph/0601213 [INSPIRE].
  53. [53]
    R. Sundrum, TASI 2004 lectures: to the fifth dimension and back, hep-th/0508134 [INSPIRE].
  54. [54]
    H. Davoudiasl, J. Hewett and T. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].ADSGoogle Scholar
  56. [56]
    Y. Hosotani, Dynamical electroweak symmetry breaking in SO(5) × U(1) gauge-Higgs unification in the Randall-Sundrum warped space, arXiv:0901.2415 [INSPIRE].
  57. [57]
    Y. Hosotani, M. Tanaka and N. Uekusa, Collider signatures of the SO(5) × U(1) gauge-Higgs unification, Phys. Rev. D 84 (2011) 075014 [arXiv:1103.6076] [INSPIRE].ADSGoogle Scholar
  58. [58]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    K.L. McDonald and D.E. Morrissey, Low-energy signals from kinetic mixing with a warped Abelian hidden sector, JHEP 02 (2011) 087 [arXiv:1010.5999] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    ILC collaboration, J. Brau et al., ILC reference design report: ILC global design effort and world wide study, arXiv:0712.1950 [INSPIRE].
  62. [62]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  63. [63]
    CLIC Study Team collaboration, A 3 TeV e + e linear collider based on CLIC technology, CERN-2000-008, CERN, Geneva Switzerland (2000) [INSPIRE].
  64. [64]
    J.R. Culham, Bessel functions of the first and second kind, http://www.mhtl.uwaterloo.ca/courses/me755/web chap4.pdf, Canada, August 2011.
  65. [65]
    E.W. Weisstein, Wolfram MathWorld webpage, http://mathworld.wolfram.com/, August 2011.
  66. [66]
    Maplesoft, Maple help center webpage, http://www.maplesoft.com/support/help/Maple, August 2011.
  67. [67]
    K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Ottawa-Carleton Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations