Advertisement

Journal of High Energy Physics

, 2013:160 | Cite as

Indirect probes of the MSSM after the Higgs discovery

  • Wolfgang Altmannshofer
  • Marcela Carena
  • Nausheen R. Shah
  • Felix YuEmail author
Open Access
Article

Abstract

We study the minimal supersymmetric standard model (MSSM) with minimal flavor violation (MFV), imposing constraints from flavor physics observables and MSSM Higgs searches, in light of the recent discovery of a 125 GeV Higgs boson by ATLAS and CMS. We analyze the electroweak vacuum stability conditions to further restrict the MSSM parameter space. In addition, a connection to ultraviolet physics is shown via an implementation of renormalization group running, which determines the TeV-scale spectrum from a small set of minimal supergravity parameters. Finally, we investigate the impact from dark matter direct detection searches. Our work highlights the complementarity of collider, flavor and dark matter probes in exploring the MSSM, and shows that even in a MFV framework, flavor observables constrain the MSSM parameter space well beyond the current reach of direct SUSY particle searches.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \(\sqrt{s}=7\) TeV, arXiv:1210.4826 [INSPIRE].
  2. [2]
    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \(\sqrt{s}=7\) TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].Google Scholar
  3. [3]
    ATLAS collaboration, Search for R-parity-violating supersymmetry in events with four or more leptons in \(\sqrt{s}=7\) TeV pp collisions with the ATLAS detector, JHEP 12 (2012) 124 [arXiv:1210.4457] [INSPIRE].Google Scholar
  4. [4]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, arXiv:1210.4491 [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector, JHEP 01 (2013) 131 [arXiv:1210.2852] [INSPIRE].Google Scholar
  6. [6]
    ATLAS collaboration, Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets and at Least One Tau Lepton in 7 TeV Proton-Proton Collision Data with the ATLAS Detector, Eur. Phys. J. C 72 (2012) 2215 [arXiv:1210.1314] [INSPIRE].ADSGoogle Scholar
  7. [7]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \(\sqrt{s}=7\) TeV with the ATLAS detector, arXiv:1209.4625 [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094 [arXiv:1209.4186] [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \(\sqrt{s}=7\) TeV proton-proton collisions, arXiv:1209.2102 [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718 (2012) 411 [arXiv:1209.0753] [INSPIRE].ADSGoogle Scholar
  11. [11]
    ATLAS collaboration, Further search for supersymmetry at \(\sqrt{s}=7\) TeV in final states with jets, missing transverse momentum and isolated leptons with the ATLAS detector, Phys. Rev. D 86 (2012) 092002 [arXiv:1208.4688] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \(\sqrt{s}=7\) TeV proton-proton collisions, Eur. Phys. J. C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \(\sqrt{s}=7\) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].ADSGoogle Scholar
  14. [14]
    ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \(\sqrt{s}=7\) TeV pp collisions using 4.7 fb −1 of ATLAS data, Phys. Rev. Lett. 109 (2012) 211803 [arXiv:1208.2590] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    ATLAS collaboration, Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \(\sqrt{s}=7\) TeV with the ATLAS detector, arXiv:1208.1447 [INSPIRE].
  17. [17]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \(\sqrt{s}=7\) TeV proton-proton collision data, arXiv:1208.0949 [INSPIRE].
  18. [18]
    ATLAS collaboration, Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2174 [arXiv:1207.4686] [INSPIRE].ADSGoogle Scholar
  19. [19]
    ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb −1 of \(\sqrt{s}=7\) TeV proton-proton collisions, JHEP 07 (2012) 167 [arXiv:1206.1760] [INSPIRE].ADSGoogle Scholar
  20. [20]
    CMS collaboration, Search for physics beyond the standard model in events with a Z boson, jets and missing transverse energy in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 716 (2012) 260 [arXiv:1204.3774] [INSPIRE].ADSGoogle Scholar
  21. [21]
    CMS collaboration, Search for anomalous production of multilepton events in pp collisions at \(\sqrt{s}=7\) TeV, JHEP 06 (2012) 169 [arXiv:1204.5341] [INSPIRE].ADSGoogle Scholar
  22. [22]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \(\sqrt{s}=7\) TeV, JHEP 08 (2012) 110 [arXiv:1205.3933] [INSPIRE].ADSGoogle Scholar
  23. [23]
    CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy, Phys. Rev. Lett. 109 (2012) 071803 [arXiv:1205.6615] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    CMS collaboration, Search for new physics in events with opposite-sign leptons, jets and missing transverse energy in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 718 (2013) 815 [arXiv:1206.3949] [INSPIRE].ADSGoogle Scholar
  25. [25]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \(\sqrt{s}=7\) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \(\sqrt{s}=7\) TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CMS collaboration, Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV, Phys. Rev. D 86 (2012) 072010 [arXiv:1208.4859] [INSPIRE].ADSGoogle Scholar
  28. [28]
    CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \(\sqrt{s}=7\) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].ADSGoogle Scholar
  29. [29]
    CMS collaboration, Search for supersymmetry in events with photons and low missing transverse energy in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B. (2012) [arXiv:1210.2052] [INSPIRE].
  30. [30]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  31. [31]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.L. Feng, K.T. Matchev and D. Sanford, Focus Point Supersymmetry Redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs Sector: A pMSSM Study of Higgs Searches, \(B_s^0\to {\mu^{+}}{\mu^{-}}\) and Dark Matter Direct Detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    O. Buchmueller et al., Higgs and Supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results and Dark Matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Z. Kang, J. Li and T. Li, On Naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Ellis and K.A. Olive, Revisiting the Higgs Mass and Dark Matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSGoogle Scholar
  50. [50]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L. Maiani, A. Polosa and V. Riquer, Probing Minimal Supersymmetry at the LHC with the Higgs Boson Masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  54. [54]
    D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M.A. Ajaib, I. Gogoladze, F. Nasir and Q. Shafi, Revisiting mGMSB in Light of a 125 GeV Higgs, Phys. Lett. B 713 (2012) 462 [arXiv:1204.2856] [INSPIRE].ADSGoogle Scholar
  56. [56]
    F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.L. Feng and D. Sanford, A Natural 125 GeV Higgs Boson in the MSSM from Focus Point Supersymmetry with A-Terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Fowlie et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].ADSGoogle Scholar
  60. [60]
    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY Predicts: Higgs Couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs Sector and Fine-Tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs Boson Discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSGoogle Scholar
  65. [65]
    H. An, T. Liu and L.-T. Wang, 125 GeV Higgs Boson, Enhanced Di-photon Rate and Gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs Decay Rate to Two Photons and the Muon g − 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, B s to μ + μ and XENON100 Data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    K. Schmidt-Hoberg and F. Staub, Enhanced h → γγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    F. Boudjema and G.D. La Rochelle, Supersymmetric Higgses beyond the MSSM: An update with flavour and Dark Matter constraints, Phys. Rev. D 86 (2012) 115007 [arXiv:1208.1952] [INSPIRE].ADSGoogle Scholar
  72. [72]
    L. Maiani, A. Polosa and V. Riquer, Heavier Higgs Particles: Indications from Minimal Supersymmetry, Phys. Lett. B 718 (2012) 465 [arXiv:1209.4816] [INSPIRE].ADSGoogle Scholar
  73. [73]
    H. Baer et al., Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson, arXiv:1210.3019 [INSPIRE].
  74. [74]
    M. Drees, A Supersymmetric Explanation of the Excess of Higgs-like Events at the LHC and at LEP, Phys. Rev. D 86 (2012) 115018 [arXiv:1210.6507] [INSPIRE].ADSGoogle Scholar
  75. [75]
    U. Haisch and F. Mahmoudi, MSSM: Cornered and Correlated, JHEP 01 (2013) 061 [arXiv:1210.7806] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    Tevatron New Physics Higgs Working Group, CDF and D0 collaborations, Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb −1 of Data, arXiv:1207.0449 [INSPIRE].
  77. [77]
    CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).
  78. [78]
    CMS collaboration, MSSM Higgs production in association with b quarksall hadronic, CMS-PAS-HIG-12-026 (2012).
  79. [79]
    CMS collaboration, MSSM Higgs production in association with b-quarkssemi leptonic, CMS-PAS-HIG-12-027 (2012).
  80. [80]
    LHCb collaboration, First evidence for the decay B s → μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    Belle collaboration, Measurement of B  → τ \({{\overline{\nu}}_t}\) with a Hadronic Tagging Method Using the Full Data Sample of Belle, arXiv:1208.4678 [INSPIRE].
  82. [82]
    BABAR collaboration, Evidence of B → τν decays with hadronic B tags, arXiv:1207.0698 [INSPIRE].
  83. [83]
    BABAR collaboration, Measurement of B(B → X s γ), the B → X s γ photon energy spectrum and the direct CP asymmetry in B → X s+d γ decays, Phys. Rev. D 86 (2012) 112008 [arXiv:1207.5772] [INSPIRE].Google Scholar
  84. [84]
    XENON100 collaboration, Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSGoogle Scholar
  87. [87]
    L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSGoogle Scholar
  89. [89]
    M.S. Carena, A. Menon, R. Noriega-Papaqui, A. Szynkman and C. Wagner, Constraints on B and Higgs physics in minimal low energy supersymmetric models, Phys. Rev. D 74 (2006) 015009 [hep-ph/0603106] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M.S. Carena, A. Menon and C. Wagner, Challenges for MSSM Higgs searches at hadron colliders, Phys. Rev. D 76 (2007) 035004 [arXiv:0704.1143] [INSPIRE].ADSGoogle Scholar
  91. [91]
    M. Carena, A. Menon and C. Wagner, Minimal Flavor Violation and the Scale of Supersymmetry Breaking, Phys. Rev. D 79 (2009) 075025 [arXiv:0812.3594] [INSPIRE].ADSGoogle Scholar
  92. [92]
    P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Running minimal flavor violation, Phys. Lett. B 668 (2008) 202 [arXiv:0805.3989] [INSPIRE].ADSGoogle Scholar
  93. [93]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry Without Prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  95. [95]
    A. Crivellin, Effective Higgs Vertices in the generic MSSM, Phys. Rev. D 83 (2011) 056001 [arXiv:1012.4840] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A. Crivellin, L. Hofer and J. Rosiek, Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation, JHEP 07 (2011) 017 [arXiv:1103.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    M.S. Carena, M. Quirós and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  99. [99]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  100. [100]
    M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    B.A. Dobrescu and P.J. Fox, Uplifted supersymmetric Higgs region, Eur. Phys. J. C 70 (2010) 263 [arXiv:1001.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan Beta regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [INSPIRE].ADSGoogle Scholar
  103. [103]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the \(\overline{t}b{H^{+}}\) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, b → sγ and supersymmetry with large tan β, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [INSPIRE].ADSGoogle Scholar
  105. [105]
    C. Hamzaoui, M. Pospelov and M. Toharia, Higgs mediated FCNC in supersymmetric models with large tan Beta, Phys. Rev. D 59 (1999) 095005 [hep-ph/9807350] [INSPIRE].ADSGoogle Scholar
  106. [106]
    K. Babu and C.F. Kolda, Higgs mediated B 0 → μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    G. Isidori and A. Retico, Scalar flavor changing neutral currents in the large tan β limit, JHEP 11 (2001) 001 [hep-ph/0110121] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s , B 0 d, s → μ + μ and B → X s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    L. Hofer, U. Nierste and D. Scherer, Resummation of tan β-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP 10 (2009) 081 [arXiv:0907.5408] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    CDF collaboration, Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV \(p\overline{p}\) collisions, Phys. Rev. Lett. 103 (2009) 201801 [arXiv:0906.1014] [INSPIRE].CrossRefGoogle Scholar
  112. [112]
    D0 collaboration, Search for Higgs bosons decaying to ττ pairs in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\) TeV, Phys. Lett. B 707 (2012) 323 [arXiv:1106.4555] [INSPIRE].ADSGoogle Scholar
  113. [113]
    D0 collaboration, Search for neutral Minimal Supersymmetric Standard Model Higgs bosons decaying to tau pairs produced in association with b quarks in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\) TeV, Phys. Rev. Lett. 107 (2011) 121801 [arXiv:1106.4885] [INSPIRE].CrossRefGoogle Scholar
  114. [114]
    CDF and D0 collaborations, Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron, arXiv:1207.2757 [INSPIRE].
  115. [115]
    CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \(\sqrt{s}=7\) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].ADSGoogle Scholar
  116. [116]
    ATLAS collaboration, Search for Neutral MSSM Higgs bosons in sqrts = 7 TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).
  117. [117]
    D0 collaboration, Search for charged Higgs bosons in top quark decays, Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811] [INSPIRE].ADSGoogle Scholar
  118. [118]
    CDF collaboration, Search for charged Higgs bosons in decays of top quarks in \(p\overline{p}\) collisions at \(\sqrt{s}=1.96\) TeV, Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269] [INSPIRE].CrossRefGoogle Scholar
  119. [119]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τ ν in top quark pair events using pp collision data at \(\sqrt{s}=7\) TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  120. [120]
    ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).
  121. [121]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \(\sqrt{s}=7\) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  122. [122]
    M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  123. [123]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  124. [124]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  125. [125]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  126. [126]
    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, MSSM Higgs boson searches at the Tevatron and the LHC: Impact of different benchmark scenarios, Eur. Phys. J. C 45 (2006) 797 [hep-ph/0511023] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    M. Carena et al., LHC Discovery Potential for Non-Standard Higgs Bosons in the 3b Channel, JHEP 07 (2012) 091 [arXiv:1203.1041] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [INSPIRE].ADSGoogle Scholar
  130. [130]
    M. Claudson, L.J. Hall and I. Hinchliffe, Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].ADSGoogle Scholar
  132. [132]
    M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [INSPIRE].ADSGoogle Scholar
  133. [133]
    C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    T. Goto, Y. Okada and Y. Shimizu, Flavor changing neutral current processes in B and K decays in the supergravity model, Phys. Rev. D 58 (1998) 094006 [hep-ph/9804294] [INSPIRE].ADSGoogle Scholar
  136. [136]
    G. Isidori and P. Paradisi, Hints of large tan β in flavour physics, Phys. Lett. B 639 (2006) 499 [hep-ph/0605012] [INSPIRE].ADSGoogle Scholar
  137. [137]
    W. Altmannshofer, A.J. Buras and D. Guadagnoli, The MFV limit of the MSSM for low tan β: Meson mixings revisited, JHEP 11 (2007) 065 [hep-ph/0703200] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    F. Domingo and U. Ellwanger, Updated Constraints from B Physics on the MSSM and the NMSSM, JHEP 12 (2007) 090 [arXiv:0710.3714] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    M. Wick and W. Altmannshofer, A Reconsideration of the b → sγ Decay in the Minimal Flavor Violating MSSM, AIP Conf. Proc. 1078 (2009) 348 [arXiv:0810.2874] [INSPIRE].ADSGoogle Scholar
  140. [140]
    W. Altmannshofer and D.M. Straub, Viability of MSSM scenarios at very large tan β, JHEP 09 (2010) 078 [arXiv:1004.1993] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  142. [142]
    S. Baek, T. Goto, Y. Okada and K.-i. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [INSPIRE].ADSGoogle Scholar
  143. [143]
    J. Foster, K.-I. Okumura and L. Roszkowski, Probing the flavor structure of supersymmetry breaking with rare B-processes: A Beyond leading order analysis, JHEP 08 (2005) 094 [hep-ph/0506146] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical Soft Terms and Flavor Physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy andPhenomenology of FCNC and CPV Effects in SUSY Theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    A. Crivellin and M. Davidkov, Do squarks have to be degenerate? Constraining the mass splitting with Kaon and D mixing, Phys. Rev. D 81 (2010) 095004 [arXiv:1002.2653] [INSPIRE].ADSGoogle Scholar
  147. [147]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  148. [148]
    A. Crivellin, L. Hofer, U. Nierste and D. Scherer, Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D 84 (2011) 035030 [arXiv:1105.2818] [INSPIRE].ADSGoogle Scholar
  149. [149]
    L. Calibbi, R. Hodgkinson, J. Jones Perez, A. Masiero and O. Vives, Flavour and Collider Interplay for SUSY at LHC7, Eur. Phys. J. C 72 (2012) 1863 [arXiv:1111.0176] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    G. Elor, L.J. Hall, D. Pinner and J.T. Ruderman, Yukawa Unification and the Superpartner Mass Scale, JHEP 10 (2012) 111 [arXiv:1206.5301] [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    W.-S. Hou, Enhanced charged Higgs boson effects in \({B^{-}}\to \tau \overline{\nu},\mu \overline{\nu}\;and\;b\to \tau \overline{\nu}+X\), Phys. Rev. D 48 (1993) 2342 [INSPIRE].ADSGoogle Scholar
  152. [152]
    Particle Data Group collaboration, Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  153. [153]
    C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-Precision \({f_B}_s\) and HQET from Relativistic Lattice QCD, Phys. Rev. D 85 (2012) 031503 [arXiv:1110.4510] [INSPIRE].ADSGoogle Scholar
  154. [154]
    Fermilab Lattice and MILC collaborations, B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].Google Scholar
  155. [155]
    H. Na et al., The B and B s Meson Decay Constants from Lattice QCD, Phys. Rev. D 86 (2012) 034506 [arXiv:1202.4914] [INSPIRE].ADSGoogle Scholar
  156. [156]
    C. Davies, Standard Model Heavy Flavor physics on the Lattice, PoS(LATTICE 2011)019 [arXiv:1203.3862] [INSPIRE].
  157. [157]
    BABAR collaboration, A Search for B + →  + ν Recoiling Against \({B^{-}}\to {D^0}{\ell^{-}}\overline{\nu}X\), arXiv:0809.4027 [INSPIRE].
  158. [158]
    Belle collaboration, Evidence for B  → τ \(\overline{\nu}\) with a Semileptonic Tagging Method, Phys. Rev. D 82 (2010) 071101 [arXiv:1006.4201] [INSPIRE].Google Scholar
  159. [159]
    M. Tanaka, Charged Higgs effects on exclusive semitauonic B decays, Z. Phys. C 67 (1995) 321 [hep-ph/9411405] [INSPIRE].ADSGoogle Scholar
  160. [160]
    U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new B → Dτν differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [INSPIRE].ADSGoogle Scholar
  161. [161]
    J.F. Kamenik and F. Mescia, B → Dτν Branching Ratios: Opportunity for Lattice QCD and Hadron Colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [INSPIRE].ADSGoogle Scholar
  162. [162]
    S. Fajfer, J.F. Kamenik and I. Nisandzic, On the \(B\to D*\tau {{\overline{\nu}}_{\tau }}\) Sensitivity to New Physics, Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].ADSGoogle Scholar
  163. [163]
    D. Becirevic, N. Kosnik and A. Tayduganov, \(\overline{B}\to D\tau {{\overline{\nu}}_{\tau }}\) vs. \(\overline{B}\to D\mu {{\overline{\nu}}_{\mu }}\), Phys. Lett. B 716 (2012) 208 [arXiv:1206.4977] [INSPIRE].ADSGoogle Scholar
  164. [164]
    J.A. Bailey et al., Refining new-physics searches in B → Dτν decay with lattice QCD, Phys. Rev. Lett. 109 (2012) 071802 [arXiv:1206.4992] [INSPIRE].ADSCrossRefGoogle Scholar
  165. [165]
    BaBar collaboration, Evidence for an excess of \(\overline{B}\to {D^{{\left( * \right)}}}\tau -{{\overline{\nu}}_{\tau }}\) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].CrossRefGoogle Scholar
  166. [166]
    Belle collaboration, Observation of \({B^{+}}\to {{\overline{D}}^{*0 }}{\tau^{+}}{\nu_{\tau }}\) and Evidence for \({B^{+}}\to {{\overline{D}}^0}{\tau^{+}}{\nu_{\tau }}\) at Belle, Phys. Rev. D 82 (2010) 072005 [arXiv:1005.2302] [INSPIRE].ADSGoogle Scholar
  167. [167]
    M. Antonelli et al., An Evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of Lepton Flavor Universality Violations in B Decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτν, B → D τν and B → τν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].ADSGoogle Scholar
  170. [170]
    A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b → c τ ν τ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].ADSGoogle Scholar
  171. [171]
    N. Deshpande and A. Menon, Hints of R-parity violation in B decays into τν, arXiv:1208.4134 [INSPIRE].
  172. [172]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in B → D (∗) τν τ and B → τν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].CrossRefGoogle Scholar
  173. [173]
    K. De Bruyn et al., Branching Ratio Measurements of B s Decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].ADSGoogle Scholar
  174. [174]
    K. De Bruyn et al., Probing New Physics via the \(B_s^0\to {\mu^{+}}{\mu^{-}}\) Effective Lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  175. [175]
    W. Altmannshofer and D.M. Straub, Cornering New Physics in b → s Transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].ADSCrossRefGoogle Scholar
  176. [176]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(Bs,d to μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSGoogle Scholar
  177. [177]
    D0 collaboration, Search for the rare decay \(B_s^0\to m{u^{+}}m{u^{-}}\), Phys. Lett. B 693 (2010) 539 [arXiv:1006.3469] [INSPIRE].ADSGoogle Scholar
  178. [178]
    CDF collaboration, Search for B s → μ + μ and B d → μ + μ Decays with CDF II, Phys. Rev. Lett. 107 (2011) 239903 [arXiv:1107.2304] [INSPIRE].CrossRefGoogle Scholar
  179. [179]
    ATLAS collaboration, Search for the decay \(B_s^0\to \mu \mu\) with the ATLAS detector, Phys. Lett. B 713 (2012) 387 [arXiv:1204.0735] [INSPIRE].ADSGoogle Scholar
  180. [180]
    CMS collaboration, Search for \(B_s^0to{\mu^{+}}{\mu^{-}}\) and B 0 toμ + μ decays, JHEP 04 (2012) 033 [arXiv:1203.3976] [INSPIRE].ADSGoogle Scholar
  181. [181]
    LHCb collaboration, Strong constraints on the rare decays B s → μ + μ and B 0 → μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].CrossRefGoogle Scholar
  182. [182]
    LHCb, CMS and ATLAS collaborations, Search for the rare decays \(B_{(s)}^0\to {\mu^{+}}{\mu^{-}}\) at the LHC with the ATLAS, CMS and LHCb experiments, LHCb-CONF-2012-017 (2012).
  183. [183]
    S.R. Choudhury and N. Gaur, Dileptonic decay of B(s) meson in SUSY models with large tan Beta, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].ADSGoogle Scholar
  184. [184]
    DELPHI collaboration, Searches for supersymmetric particles in e + e collisions up to 208-GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].Google Scholar
  185. [185]
    OPAL collaboration, Search for chargino and neutralino production at \(\sqrt{s}=192\) GeV to 209 GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].ADSGoogle Scholar
  186. [186]
    LHCb collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report, CERN-LHCC-2012-007 (2012).
  187. [187]
    H.E. Logan and U. Nierste, B s,d →  + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].ADSCrossRefGoogle Scholar
  188. [188]
    M. Misiak et al., Estimate of \(B\left( {\overline{B}\to {X_s}\gamma } \right)\) at \(O\left( {\alpha_s^2} \right)\), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  189. [189]
    T. Becher and M. Neubert, Analysis of \(Br\left( {\overline{B}\to {X_s}\gamma } \right)\) at NNLO with a cut on photon energy, Phys. Rev. Lett. 98 (2007) 022003 [hep-ph/0610067] [INSPIRE].ADSCrossRefGoogle Scholar
  190. [190]
    M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at Subleading Power and Irreducible Uncertainties in \(\overline{B}\to {X_s}\gamma\) Decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].ADSCrossRefGoogle Scholar
  191. [191]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  192. [192]
    A. Freitas and U. Haisch, \(\overline{B}\to {X_s}\gamma\) in two universal extra dimensions, Phys. Rev. D 77 (2008) 093008 [arXiv:0801.4346] [INSPIRE].ADSGoogle Scholar
  193. [193]
    W. Altmannshofer, P. Paradisi and D.M. Straub, Model-Independent Constraints on New Physics in b → s Transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].ADSCrossRefGoogle Scholar
  194. [194]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].ADSGoogle Scholar
  195. [195]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  196. [196]
    L.E. Ibáñez and C. Lopez, N = 1 Supergravity, the Weak Scale and the Low-Energy Particle Spectrum, Nucl. Phys. B 233 (1984) 511 [INSPIRE].ADSCrossRefGoogle Scholar
  197. [197]
    L.E. Ibáñez, C. Lopez and C. Muñoz, The Low-Energy Supersymmetric Spectrum According to N = 1 Supergravity Guts, Nucl. Phys. B 256 (1985) 218 [INSPIRE].ADSCrossRefGoogle Scholar
  198. [198]
    M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Radiative electroweak symmetry breaking and the infrared fixed point of the top quark mass, Nucl. Phys. B 419 (1994) 213 [hep-ph/9311222] [INSPIRE].ADSCrossRefGoogle Scholar
  199. [199]
    N. Arkani-Hamed, A. Delgado and G. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  200. [200]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].ADSGoogle Scholar
  201. [201]
    M. Srednicki and R. Watkins, Coherent couplings of neutralinos to nuclei from squark mixing, Phys. Lett. B 225 (1989) 140 [INSPIRE].ADSGoogle Scholar
  202. [202]
    G. Gelmini, P. Gondolo and E. Roulet, Neutralino dark matter searches, Nucl. Phys. B 351 (1991) 623 [INSPIRE].ADSCrossRefGoogle Scholar
  203. [203]
    M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].ADSGoogle Scholar
  204. [204]
    J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].ADSGoogle Scholar
  205. [205]
    J.R. Ellis, K.A. Olive, Y. Santoso and V.C. Spanos, Update on the direct detection of supersymmetric dark matter, Phys. Rev. D 71 (2005) 095007 [hep-ph/0502001] [INSPIRE].ADSGoogle Scholar
  206. [206]
    M.S. Carena, D. Hooper and P.Z. Skands, Implications of direct dark matter searches for MSSM Higgs searches at the Tevatron, Phys. Rev. Lett. 97 (2006) 051801 [hep-ph/0603180] [INSPIRE].ADSCrossRefGoogle Scholar
  207. [207]
    M.S. Carena, D. Hooper and A. Vallinotto, The Interplay Between Collider Searches For Supersymmetric Higgs Bosons and Direct Dark Matter Experiments, Phys. Rev. D 75 (2007) 055010 [hep-ph/0611065] [INSPIRE].ADSGoogle Scholar
  208. [208]
    C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].ADSCrossRefGoogle Scholar
  209. [209]
    M. Perelstein and B. Shakya, XENON100 Implications for Naturalness in the MSSM, NMSSM and lambda-SUSY, arXiv:1208.0833 [INSPIRE].
  210. [210]
    J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [INSPIRE].ADSCrossRefGoogle Scholar
  211. [211]
    XENON100 collaboration, Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Wolfgang Altmannshofer
    • 1
  • Marcela Carena
    • 1
    • 2
    • 3
  • Nausheen R. Shah
    • 4
  • Felix Yu
    • 1
    Email author
  1. 1.Fermi National Accelerator LaboratoryBataviaU.S.A.
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  3. 3.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.
  4. 4.Michigan Center for Theoretical Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations